ECE 321 - Solution to Homework \#5

1) Find the Q-point for the following circuit

First, redraw the circuit using the Thevenin equivalent for R1 and R2

- Vth $=3.00 \mathrm{~V}$
- Rth $=22.5 \mathrm{k}$

Next, analyze the circuit

$$
\begin{aligned}
& -3 V+22500 I_{b}+0.7+1000(1+\beta) I_{b}=0 \\
& I_{b}=10.291 \mu A \\
& I_{c}=\beta I_{b}=2.058 \mathrm{~mA} \\
& V_{c}=12-2000 I_{c}=7.884 \mathrm{~V} \\
& V_{e}=\left(I_{b}+I_{c}\right) 1000=2.068 \mathrm{~V} \\
& V_{c e}=5.815 \mathrm{~V}
\end{aligned}
$$

Q-Point:

$$
\begin{aligned}
& \text { Ic }=1.058 \mathrm{~mA} \\
& \text { Vce }=5.815 \mathrm{~V}
\end{aligned}
$$

2) Find the 2-port model when connected as a common-emitter amplifier

2-Port Model:

- Rin $=30 \mathrm{k}| | 90 \mathrm{k}| | 5053=4126$
- $\mathrm{Ai}=0$
- Rout $=2 \mathrm{k}$
- $\mathrm{Ao}=-\left(\frac{\beta R_{c}}{r_{f}}\right)=-79.16$

3) Find the 2-port model as a common-base configuration

3a) Draw the small-signal model

3b) Find the 2-port model

$$
\begin{aligned}
& R_{\text {in }}=30 k| | 90 k| | 5053 \| \frac{5053}{200}=25.11 \Omega \\
& A_{\text {in }}=0 \\
& R_{\text {out }}=2 k \\
& A_{\text {out }}=+\frac{\beta R_{c}}{r_{f}}=+79.61
\end{aligned}
$$

4) Find the 2-port model as a common-collector configuration

4a) Draw the small-signal model

4b) Find the 2-port model

- Rin $=30 \mathrm{k}| | 90 \mathrm{k}| | 5053=4126$
- $A_{\text {in }}=\left(\frac{30 k \| \mid 90 k}{30 k \mid 90 k+5053}\right)=0.8166$
- $R_{\text {out }}=1 k\|5053\| \frac{5053}{200}=24.5 \Omega$
- $A_{\text {out }}=\left(\frac{1 k}{1 k+\frac{5535}{\beta+1}}\right)=0.9755$

5) Design a multi-stage amplifier for

- Input: Vin $=1 \mathrm{uV}$, Rth $=1 \mathrm{k}$
- Output: 8 Ohm speaker
- Relationship: Vo = 1e6 Vin

First stage $=$ CE (high input impedance)
Last stage = push-pull amp
Each stage adds a gain of 53.33

$$
79.16 \cdot\left(\frac{4126}{4126+2000}\right)=53
$$

To get a gain of $1,000,000$

$$
\left(\frac{4126}{4126+1000}\right) \cdot 53 \cdot 53 \cdot 53 \cdot 53 \cdot k=1,000,000
$$

So, 4 CE stages is enough. To trim the gain, add a resistor to reduce the gain by 5.2

