ECE 321 - Homework \#2

Integrators, Differentiators, Filters and Phasors. Due Monday, April 11th

1) Design an op-amp circuit to implement a PID compensator:

$$
Y=\left(3+\frac{4}{s}+5 s\right) X
$$

Problem 2-5) A filter has the following transfer function

$$
Y=\left(\frac{100}{(s+8.5)\left(s+12.1 \angle 69.5^{0}\right)\left(s+12.1 \angle-69.5^{0}\right)}\right) X
$$

2) What is the differential equation relating X and Y ?

Multiply out the polynomial. In Matlab:

```
>> p1 = -8.5;
>> p2 = 12.1*exp(-j*69.5*pi/180);
>> p3 = conj(p2);
>> poly([p1, p2,p3])
```

$$
\begin{array}{llll}
1 & 17 & 218.4 & 1244.5
\end{array}
$$

Cross Multiply:

$$
\left(s^{3}+17 s^{2}+218.4 s+1244\right) Y=100 X
$$

this means

$$
\frac{d^{3} y}{d t^{3}}+17 \frac{d^{2} y}{d t^{2}}+218.4 \frac{d y}{d t}+1244 y=100 x
$$

Another way to write this is

$$
y^{\prime \prime \prime}+17 y^{\prime \prime}+218.4 y^{\prime}+1244 y=100 x
$$

3) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)+5 \cos (400 t)
$$

Use superposition

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=2 \\
& \\
& \quad \mathrm{~s}=0 \\
& \left(\frac{100}{(s+8.5)\left(s+12.1 \angle 69.5^{0}\right)\left(s+12.1 \angle-69.5^{0}\right)}\right)_{s=0}=0.0804 \\
& \quad \text { Output = Gain * Input } \\
& y=(0.0804) *(2) \\
& y=0.1608
\end{aligned}
$$

$x(t)=3 \cos (4 t)$

$$
\begin{aligned}
& \mathrm{s}=\mathrm{j} 4 \\
& \left(\frac{100}{(s+8.5)\left(s+12.1 \angle 69.5^{0}\right)\left(s+12.1 \angle-69.5^{0}\right)}\right)_{s=j 4}=0.079 \angle-39^{0}
\end{aligned}
$$

Output = Gain * Input

$$
y=\left(0.079 \angle-39^{0}\right) \cdot 3 \cos (4 t)
$$

$$
y(t)=0.237 \cos \left(4 t-39^{\circ}\right)
$$

$x(t)=5 \cos (400 t)$

$$
\mathrm{s}=\mathrm{j} 400
$$

$$
\left(\frac{100}{(s+8.5)\left(s+12.1 \angle 69.5^{0}\right)\left(s+12.1 \angle-69.5^{0}\right)}\right)_{s=j 400}=0.00000156 \angle 92^{0}
$$

Output $=$ Gain * Input

$$
\begin{aligned}
& y=\left(0.00000156 \angle 92^{0}\right) \cdot 5 \cos (400 t) \\
& y(t)=0.0000078 \cos \left(400 t+92^{0}\right)
\end{aligned}
$$

Add up all three terms to get $x(t)$. Add up all three terms to get $y(t)$

$$
y=0.1608+0.237 \cos \left(4 t-39^{0}\right)+0.0000078 \cos \left(400 t+92^{0}\right)
$$

4) Plot the gain of this filter from 0 to $100 \mathrm{rad} / \mathrm{sec}$
```
>> w = [0:0.01:100]';
>> s = j*w;
>> p1 = -8.5;
>> p2 = -12.1*exp(-j*69.5*pi/180);
>> p3 = conj(p2);
>> G = 100 ./ ( (s-p1).*(s-p2).*(s-p3) );
>> plot(w,abs(G))
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


5) Design a circuit to implement this filter

Separate this into two parts: a 1st-order filter and a 2nd-order filter

$$
\left(\frac{1}{s+8.5}\right)\left(\frac{100}{s^{2}+8.475 s+146.4}\right)
$$

Build each stage separately and cascade them:

6a) Design a filter which

- Has a gain between 0.9 and 1.1 at $10 \mathrm{rad} / \mathrm{sec}$
- Has a gain less than 0.1 at $1 \mathrm{rad} / \mathrm{sec}$, and
- Has a gain less than 0.1 at $100 \mathrm{rad} / \mathrm{sec}$

Place the pole at $\mathrm{j} 10 \mathrm{rad} / \mathrm{sec}$ to pass $10 \mathrm{rad} / \mathrm{sec}$
Adjust the real part so that the gain at 1 and $100 \mathrm{rad} / \mathrm{sec}$ is low enough.
Guess \#1: Make the real part '1' so that the filter passes frequencies at $10 \mathrm{rad} / \mathrm{sec}+/-1 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{k s}{(s+1+j 10)(s+1-j 10)}\right)
$$

Pick ' k ' so that the gain ag j10 is one

```
>> G = zpk(0,[-1+j*10,-1-j*10],1);
>> evalfr(G,j*10)
    0.4988 + 0.0249i
```

Add a gain of 2 so that the gain at 10 is close to 1 :

```
>> G = zpk(0,[-1+j*10,-1-j*10],2);
>> evalfr(G,j*10)
    0.9975 + 0.0499i
```

Now check the gain at 1 and $100 \mathrm{rad} / \mathrm{sec}$

```
>> evalfr(G,j*1)
    0.0004 + 0.0200i
>> evalfr(G,j*100)
    0.0004 - 0.0202i
```

6b) Verify your filter in Matlab
Done. The plot from 1 to $100 \mathrm{rad} / \mathrm{sec}$ is

Lab:

7) Design a push-pull amplifier to drive an 8-Ohm speaker

- Input: -5 V to +5 V , capable of $10 \mathrm{~mA}, 0-10 \mathrm{kHz}$
- Output: 8 Ohm speaker
- Relationship: Vo = Vin, +/- 500mV

8) Build a circuit to implement this push-pull amplifier. Verify its operation at

- $\operatorname{Vin}=-4 \mathrm{~V}$
- $\operatorname{Vin}=-2 \mathrm{~V}$
- Vin $=+2 \mathrm{~V}$
- $\operatorname{Vin}=+4 \mathrm{~V}$

