ECE 321 - Homework \#5

BJT Amplifier Design. Due Monday, April 25th
For each problem, use the following circuit. Assume an ideal silicon diode with $\beta=100$

Problem 1-3: BJT Amplifier in Common Base or Common Collector Configuration
1a) Draw the small-signal model for this circuit in common base configuration.

1b) Determine the 2-port model for this circuit in common base configuration.
Rin: $\quad 1 \mathrm{k}|\mid 4373$ || 4373/100 = 41.5 Ohms
Ai: 0
Rout: 5k
Ao: $\quad\left(\frac{5 k \cdot 100}{4373}\right)=+114$

2a) Draw the small-signal model for this circuit in common collector configuration.

2b) Determine the 2-port model for this circuit in common collector configuration.
Rin: $\quad 10 \mathrm{k}||50 \mathrm{k}|| 4373=2688$
Ai: $\quad\left(\frac{10 k \| 50 k}{10 k \| 50 k+4373}\right)=0.6558$
Ao: $\quad\left(\frac{X-1}{4373}\right)+100\left(\frac{X-1}{4373}\right)+\left(\frac{X}{1000}\right)=0$

$$
X=A_{o}=0.9585
$$

Ro: $\quad 1 \mathrm{k}|\mid 4373$ || 4373/100 $=41.5$
3) Determine the 2-port model for a common emitter : common collector amplifier.

Rin $=2688 \mathrm{Ai}=0$ Rout: Short V1. Apply 1 V to V3. Compute the current

$$
\begin{aligned}
& \mathrm{V} 1=0 \\
& V_{2}=\left(\frac{5 k}{5 k+2688}\right) 0.6558 \mathrm{~V}=0.4265 \mathrm{~V}
\end{aligned}
$$

$0.9585 V_{2}=0.4088 \mathrm{~V}$

$$
I_{\text {in }}=\left(\frac{1 V-0.4088 \mathrm{~V}}{41.5 \Omega}\right)
$$

$$
R_{\text {out }}=\frac{1}{I_{\text {in }}}=\left(\frac{41.5 \Omega}{1 V-0.4088 V}\right)=70.2 \Omega
$$

Ao: Apply 1V to V1. Compute V3

$$
\begin{aligned}
& V_{2}=\left(\frac{2688}{2688+5000}\right)(-114 V)+\left(\frac{5 k}{5 k+2688}\right)\left(0.6558 V_{3}\right) \\
& V_{3}=0.9585 V_{2}
\end{aligned}
$$

Solving 2 equations for 2 unknowns

$$
\begin{aligned}
& V_{2}=67.42 V \\
& V_{3}=A_{o}=64.62
\end{aligned}
$$

MOSFET Amplifier: Assume for the MOSFET amplifier (next page) that

- $V_{t n}=2 \mathrm{~V}$
- $k_{n}=0.001 \frac{A}{V^{2}}$

4) Determine R1 and R2 so that the Q point is Vds $=6 \mathrm{~V}$ and $\mathrm{R} 1 \| \mathrm{R} 2=100 \mathrm{k}$ Ohms

$$
\begin{aligned}
& I_{d s}=\frac{12 \mathrm{~V}-6 \mathrm{~V}}{10 \mathrm{k}+1 \mathrm{k}}=545.5 \mu \mathrm{~A} \\
& V_{s}=1000 I_{d s}=545.5 \mathrm{mV} \\
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& V_{g s}=3.044 \mathrm{~V} \\
& V_{g}=3.590 \mathrm{~V} \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=3.590 \mathrm{~V} \\
& R_{1} \| R_{2}=100 \mathrm{k} \\
& R_{1}=334 \mathrm{k} \\
& R_{2}=143 \mathrm{k}
\end{aligned}
$$

5) Determine the 2-port model for this MOSFET amplfiier in common source configuration.

$$
\begin{aligned}
& g_{m}=\frac{d I_{d s}}{d V_{g s}}=\frac{d}{d V_{g s}}\left(\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2}\right) \\
& g_{m}=\left(k_{n}\left(V_{g s}-V_{t h}\right)\right) \\
& g_{m}=0.003044 \frac{A}{V}
\end{aligned}
$$

Rin: $\quad 143 \mathrm{k}|\mid 334 \mathrm{k}=100 \mathrm{k}$
Ai: 0
Rout: 10k
Ao: $\quad-10 k \cdot g_{m}=-30.44$
6) Use CE / CC / CB / CS amplifiers to design a multi-stage amplifier to meet the followin requiremeints:

Input:

- 1 uVpp sine wave at 1 kHz , output impedance $=100 \mathrm{k}$ Ohms

Output:

- 8 Ohm Speaker

Relationship:

- 1 uVpp sine wave at the input drives the 8 Ohm speaker at 4 Watts at 1 kHz , +-1 Watt

Problem 7-10) Term Project

Design, build, and test one section of your term project. Include
7) Requirements. What are the inputs, output, and how they relate.
8) Analysis: Give computations for resistors, etc. so that your circuit meets your requirements.
9) Test: Simulate in PartSim (or like program) to verify your analysis
10) Validation: Build your circuit in lab and collect data to verify it meets your requirements.

