ECE 321: Final Name

1) Quiz 1 - Push Pull. Determine the voltages and currents for the following circuit. Assume transistors with

- $V_{b e}=0.7 \mathrm{~V}$
- $\beta=100$
- $\max (I c)=200 \mathrm{~mA}$

I 1	I 2	V 3	V 4
396 uA	40 mA	6.6 V	5.9 V

2) Quiz 1 - Inst Amplifier. An RTD (temperature-dependent resistor) has a temperature - resistance relationship of

$$
R=1000 \cdot(1+0.006 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- 10 V at 100 C

First select the top resistor in the voltage divider. A middle values works usually, so let it be 1 k At 0C

- $\mathrm{R}=1000$ Ohms
- Vin $=5 \mathrm{~V}$
- Vout $=0 \mathrm{~V}$

At 100C

- $\mathrm{R}=1600$ Ohms
- Vin $=6.15 \mathrm{~V}$
- Vout $=10 \mathrm{~V}$

As the input goes up, the output goes up. Connet to the + input.
To get the output to have a 10 V swing, add a gain of

$$
\text { gain }=\frac{6.15 V-5 V}{10 V-0 V}=8.6666
$$

The output is 0 V when the input is 5 V . Make the offset 5 V
3) Quiz 2 - Filter Analysis: Determine the differential equation relating X and Y.

$$
Y=\left(\frac{3 s+2}{(s+4)(s+20)}\right) X=\left(\frac{3 s+2}{s^{2}+24 s+80}\right) X
$$

Cross multiply

$$
\left(s^{2}+24 s+80\right) Y=(3 s+2) X
$$

'sY' means 'the derivative of y '

$$
\frac{d^{2} y}{d t^{2}}+24 \frac{d y}{d t}+80 y=3 \frac{d x}{d t}+2 x
$$

Determine $y(t)$ given $x(t)$

$$
x(t)=4+5 \sin (6 t)
$$

$$
\begin{aligned}
& x(t)=4 \\
& s=0 \\
& \left(\frac{3 s+2}{s^{2}+24 s+80}\right)_{s=0}=0.025 \\
& y=(0.025) \cdot 4 \\
& y=0.1 \\
& x(t)=5 \sin (6 t) \\
& \mathrm{s}=\mathrm{j} 6 \\
& \left(\frac{3 s+2}{s^{2}+24 s+80}\right)_{s=j 6}=0.12 \angle 10^{0} \\
& y=\left(0.12 \angle 10^{0}\right) \cdot 5 \sin (6 t) \\
& y(t)=0.6 \sin \left(6 t+10^{0}\right)
\end{aligned}
$$

Total Answer:

$$
y(t)=0.1+0.6 \sin \left(6 t+10^{0}\right)
$$

4) Quiz 2 - Find R and C to implement the following Chebychev filter

$$
Y=\left(\frac{4000}{(s+8)\left(s+12 \angle 70^{0}\right)\left(s+12 \angle-70^{0}\right)}\right) X=\left(\frac{4000}{(s+8)\left(s+8.2 s+12^{2}\right)}\right) X
$$

C 1	C 2	R 3	R 4
$\mathbf{1 2 . 5 u F}$	$\mathbf{0 . 8 3 3} \mathbf{u F}$	$\mathbf{1 3 1 k}$	$\mathbf{5 0 k}$

$$
Z=\left(\frac{a\left(\frac{1}{100 c_{2}}\right)^{2}}{s^{2}+\left(\frac{3-0}{100 C_{2}}\right) s+\left(\frac{1}{100 c_{2}}\right)^{2}}\right)\left(\frac{1}{10 k \cdot C_{1} s+1}\right) X \quad Y=\left(1+\frac{R_{4}}{100 k}\right) Z
$$

$$
a=1+\frac{R_{3}}{100 k}
$$

(s+8)

overall gain $=3.47=2.316$ * 1.5

$$
\begin{array}{ll}
\frac{1}{10 k \cdot C}=8 & \mathrm{R} 4=50 \mathrm{k} \\
C_{1}=12.5 \mu F &
\end{array}
$$

12:

$$
\begin{aligned}
& \left(\frac{1}{100 k \cdot C_{2}}\right)=12 \\
& C_{2}=0.833 \mu F
\end{aligned}
$$

3-a

$$
\begin{aligned}
& 12(3-a)=8.2 \\
& a=2.316=1+\frac{R_{3}}{100 k}
\end{aligned}
$$

5) Quiz 3 - A low-pass filter is to have a gain of

- $0.9<$ gain < 1.2 for frequencies below $300 \mathrm{rad} / \mathrm{sec}(48 \mathrm{~Hz})$
- gain <0.2 for frequencies above $400 \mathrm{rad} / \mathrm{sec} 64 \mathrm{~Hz}$)

Determine the number of poles required (N) and give the transfer function for an N th order Butterworth filter with a corner at $300 \mathrm{rad} / \mathrm{sec}$

N \# of poles	$G(s)$ transfer function for an N-order Butterworth low pass filter
$\mathbf{6}$	$\left(\frac{300^{6}}{\left(s+300 \angle \pm 15^{0}\right)\left(s+300 \angle \pm 45^{0}\right)\left(s+300 \angle \pm 75^{0}\right)}\right)$

$$
\left(\frac{300}{400}\right)^{N}=0.2
$$

$$
N=5.59
$$

round up to $\mathrm{N}=6$. The angle between poles is

$$
\frac{180}{N}=30^{0}
$$

6) Quiz 3 - BJT: DC Analysis. Find R1 and R2 so that

- The Q-point is stabilized for variations in β and
- The Q point is Vce $=6 \mathrm{~V}$

Assume $\beta=100$

R1	R2	Vb	Rb
$132 k$	$23.5 k$	1.808	$20 k$

To get a Q point of 6 V

$$
\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=20 k
$$

$$
\begin{aligned}
& I_{c}=\frac{12 V-6 V}{10 k+1.01 \cdot 2 k}=499 \mu \mathrm{~A} \\
& I_{b}=\frac{I_{c}}{100}=4.99 \mu \mathrm{~A}
\end{aligned}
$$

$$
\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=1.808 \mathrm{~V}
$$

solve 2 equations for 2 unknowns to get R1 and R2

To stabilize the Q point

$$
\begin{aligned}
& (1+\beta) R_{e} \gg R_{b} \\
& R_{b} \ll 202 k
\end{aligned}
$$

Let $\mathrm{Rb}=20 \mathrm{k}$

$$
V_{b}=20 \mathrm{k} \cdot I_{b}+0.7+2 k \cdot\left(I_{b}+I_{c}\right)=1.808 \mathrm{~V}
$$

7 - Quiz 4) Determine the 2-port model for the following amplifier:

Rin	Ai	Rout	Ao
$23.46 k$	0	$2 k$	-1.354

Rin: Short Vout, apply 1V to Vin. Find I
The 800 Ohm resistor looks like a 80.8 k resistor looking left. This gives

$$
\begin{aligned}
& R_{\text {in }}=10 k+20 k\|80 k\|(4 k+80.8 k) \\
& R_{\text {in }}=10 k+13.46 k
\end{aligned}
$$

Ai: Apply 1V to Vout. Measure teh voltage at Vin. Turns out 0 V works - the currents balance

$$
\begin{aligned}
& \left(\frac{X}{4 k+16 k}\right)+\left(\frac{X}{800}\right)+100\left(\frac{X}{4 k+16 k}\right)=0 \\
& X=0
\end{aligned}
$$

Rout: Short Vin. Apply 1V to Vout. Measure the current. Like Ai, the voltage at X will be

$$
\mathrm{X}=0, \quad \mathrm{Ib}=0, \quad \text { Rout }=2 \mathrm{k}
$$

Ao: Apply 1V to Vin. Measure the voltage at Vout
The 800 Ohm resistor looks like an 80.8 k resistor. By voltage division then

$$
\begin{aligned}
& X=\left(\frac{80.8 k}{80.8 k+4 k}\right) Y=0.9528 Y \\
& \left(\frac{Y-1}{10 k}\right)+\left(\frac{Y}{20 k}\right)+\left(\frac{Y}{80 k}\right)+\left(\frac{Y-0.9528 Y}{4 k}\right)=0 \\
& Y=0.5737 V \\
& I_{b}=6.77 \mu A \\
& V_{o}=-100 I_{b} \cdot 2 k-1.354
\end{aligned}
$$

ACHA Bonus!! What is the idea behind health insurance?
Insurance is a zero-sum game.
Take an expense where the average cost for a population is small but the individual cost may be high. Everyone chips in, paying the average cost. This pays the high cost for the individuals who need it.

For example, take auto insurance. Suppose the probability of an accident is small ($1 / 1000$) but the cost of that accident is large $(\$ 100,000)$. The average cost for a population is $\$ 100$

If a group of 1000 people all pitch in $\$ 100$ into a pool, that pool will have enough money to cover the cost of the person who gets into an accident. That's what insruance is.

- The people who don't get into an accident are subsidizing the person who gets into an accident
- The person who gets into the accident could be anyone. That $\$ 100$ premium covers the cost in the event that you are the one who gets into an accident.

That's what health insurance is as well:

- Everyone pays into a pool the average cost of health care.
- This creates a pool of money that will cover the cost of health care for those individuals who wind up needing it.
- We don't know the future: anyone could be in need of health coverage.

Paul Ryan is correct when he says that the healthy people are subsidizing the people who get sick. That's pretty much the definition of health insurance.

