ECE 321 - Homework \#1

Op-Amp Amplifiers, Push-Pull Amplifiers. Due Monday April 3, 2017

1) Design an op-amp amplifier to implement the following functions:
a) $y=7 x$
b) $y=-7 x$

c) $y=7 x-3$

Rewrite as

$$
y=7\left(x-\frac{3}{7}\right)
$$

2) Write N equations to solve for N unknown voltage nodes. Assume ideal op-amps.

There are 5 voltage nodes, so you need 5 equations to solve for 5 unknowns. Start with the outputs of the op-amps V2:

$$
V_{1}=V_{4}
$$

V5:

$$
V_{3}=V_{4}
$$

Now write the other three equations
V1

$$
\left(\frac{V_{1}-V_{r}}{100 k}\right)+\left(\frac{V_{1}-V_{2}}{200 k}\right)=0
$$

V3:

$$
\left(\frac{V_{3}-V_{2}}{100 k}\right)+\left(\frac{V_{3}-V_{m}}{10 k}\right)+\left(\frac{V_{3}-V_{5}}{200 k}\right)=0
$$

V4:

$$
V_{4}=V_{p}
$$

3: Push-Pull Amplifier (voltage output): Find the voltages for the following push-pull amplifier when

- a) $\mathrm{Vin}=+5 \mathrm{~V}$
- b) $\mathrm{Vin}=-5 \mathrm{~V}$

Assume the transistors are Darlington pairs (TIP)

- $\beta=1000$
- $\left|V_{b e}\right|=1.4 \mathrm{~V}$
- $\left|V_{c e: s a t}\right|=0.9 \mathrm{~V}$

4: Push Pull Amplifier (Current Output): Find the voltages for the following push-pull amplifier when

- a) $\operatorname{Vin}=+5 \mathrm{~V}$
- b) $\mathrm{Vin}=-5 \mathrm{~V}$

Design a push-pull amplifier
5) Requirements: Speficy the

Input:

- -5 V to +5 V analog,
- capable of 10 mA ,

Output:

- 8 Ohm speaker

Relationship

- $y=x$,
- $\pm 200 \mathrm{mV}$ (current $=$ voltage $/ 50$, Vout $=$ Vin $)$

6) Analysis:

- Since the tolerance is 200 mV , you need to use an op-amp to remove the crossover distortion.
- At the extremes ($+/-5 \mathrm{~V}$), you need at least $+/-6.4 \mathrm{~V}$ to power this circuit. Let the power supply be $+/-8 \mathrm{~V}$
- The input current is the current into an op-amp (ideally zero - less than 10 mA in any case)
- The output current will be $5 \mathrm{~V} / 8$ Ohms $=625 \mathrm{~mA}$. Pick transistors capable of 625 mA (TIP 112 and TIP 117)

Vin	Va			Vb (Output)		
	Calculation problem 6	Simulation problem 7	Lab problem 8	Calculation problem 6	Simulation problem 7	Lab problem 8
+5 V	+6.4 V	+5.95 V	+6.37 V	+5 V	+5.00 V	+4.95 V
+1 V	+2.4 V	+1.92 V	+2.24 V	+1 V	+1.00 V	+0.98 V
-5 V	-6.4 V	-5.58 V	-6.27 V	-5 V	-5.00 V	-4.96 V

The calculated, simulate, and measured (lab) voltage at the output (Vb) all agree within 100 mV - verifying our design.
Va is off for the simulation since the transistor we used is a Darlington pair where the simulation used a single transistor.
7) Simulation: Test your design in simulation via PartSim or similar program

PartSim Simulation for Vin $=+5 \mathrm{~V} . \mathrm{NPN}=$ on, $\mathrm{PNP}=$ off (push)
Voltages match calculations except for Vb . This is a single transistor ($\mathrm{Vbe}=0.7 \mathrm{~V}$) instead of a Darlington pair

PartSim Simulation for Vin $=-5 \mathrm{~V}$. NPN $=$ off, $\mathrm{PNP}=$ on (pull)
Voltages match calculations except for Vb . This is a single transistor ($\mathrm{Vbe}=0.7 \mathrm{~V}$) instead of a Darlington pair
8) Validation: Build your circuit in lab. Collect data to verify your analysis and simulation results.

