ECE 321 - Homework \#2

Filters. Due Monday April 3, 2017
Problem 1) DC Block: For the following filter:

$$
Y=\left(\frac{2 s}{s+6}\right) X
$$

a) Determine the differential equation relating X and Y

Cross multiply

$$
(s+6) Y=(2 s) X
$$

'sY' means 'the derivartive of Y

$$
\frac{d y}{d t}+6 y=2 \frac{d x}{d t}
$$

or using dot notation

$$
\dot{y}+6 y=2 \dot{x}
$$

b) Determine $y(t)$ assuming

$$
x(t)=2+3 \sin (10 t)+4 \sin (100 t)
$$

Use superposition

$\mathrm{x}(\mathrm{t})=2$	$x(t)=3 \sin (10 t)$	$x(t)=4 \sin (100 t)$
$s=0$	$s=j 10$	$s=j 100$
$\left(\frac{2 s}{s+6}\right)_{s=0}=0$	$\left(\frac{2 s}{s+6}\right)_{s=j 10}=1.715 \angle 31^{0}$	$\left(\frac{2 s}{s+6}\right)_{s=j 100}=1.996 \angle 3^{0}$
$y=(0) \cdot 2$	$\left(1.715 \angle 31^{0}\right) \cdot 3 \sin (10 t)$	$y=\left(1.996 \angle 3^{0}\right) \cdot 4 \sin (100 t)$
$y(t)=0$	$y(t)=5.145 \sin \left(10 t-31^{0}\right)$	$\left.y(t)=7.98 \sin \left(100 t+3^{0}\right)\right)$
block	pass	pass

This is a DC block
Add up the three inputs to get $x(t)$. Add up the three outputs to get $y(t)$

$$
y(t)=0+5.145 \sin \left(10 t-31^{0}\right)+7.98 \sin \left(100 t+3^{0}\right)
$$

c) Design an op-amp circuit to implement this filter.

Gain $=2 . \quad$ Use two 100 k resistors.
$1 / R C=6$. Let

- $\mathrm{R}=100 \mathrm{k}$
- $C=1.667 \mathrm{uF}$

One possible implementation of a DC Block

Problem 2) Low Pass Filter with Real Poles: For the following filter:

$$
Y=\left(\frac{400}{(s+10)(s+20)}\right) X
$$

a) Determine the differential equation relating X and Y

Multiply out and cross multiply

$$
\left(s^{2}+30 s+200\right) Y=400 X
$$

which means

$$
\frac{d^{2} y}{d t^{2}}+30 \frac{d y}{d t}+200 y=400 x
$$

or

$$
\ddot{y}+30 \dot{y}+200 y=400 x
$$

b) Determine $y(t)$ assuming

$$
x(t)=2+3 \sin (10 t)+4 \sin (100 t)
$$

Use superposition
$\left\{\begin{array}{l}x(t)=2 \\ s=0 \\ \left(\frac{400}{(s+10)(s+20)}\right)_{s=0}=2 \\ y=(2) \cdot 2 \\ y(t)=4\end{array}\right.$
$\left\{\begin{array}{l}x(t)=3 \sin (10 t) \\ s=j 10 \\ \left(\frac{400}{(s+10)(s+20)}\right)_{s=j 10}=1.26 \angle-71.6^{0} \\ y=\left(1.26 \angle-71.6^{0}\right) \cdot 3 \sin (10 t) \\ y(t)=3.79 \sin \left(10 t-71.6^{0}\right) \\ \text { mostly pass }\end{array}\right.$
$\left\{\begin{array}{l}x(t)=4 \sin (100 t) \\ s=j 100 \\ \left(\frac{400}{(s+10)(s+20)}\right)_{s=j 100}=0.039 \angle-163^{0} \\ y=\left(0.039 \angle-163^{0}\right) \cdot 4 \sin (100 t) \\ y(t)=0.156 \sin \left(100 t-163^{0}\right) \\ \text { block }\end{array}\right.$

This is a low-pass filter.

Add up the three outputs to get $y(t)$

$$
y(t)=4+3.79 \sin \left(10 t-71.6^{0}\right)+0.156 \sin \left(100 t-163^{0}\right)
$$

c) Design an op-amp circuit to implement this filter.

Use two RC filters with
$1 / \mathrm{RC}=10$

- $\mathrm{R}=10 \mathrm{k}$
- $C=10 u F$
$1 / \mathrm{RC}=20$
- $\mathrm{R}=100 \mathrm{k}$
- $\mathrm{C}=0.5 \mathrm{uF}$

Add a gain of two so that the DC gain is two

One implementation of a low-pass filter with two real poles

Another implementation of a low-pass filter with two real poles

Problem 3) Low Pass Filter with Complex Poles: For the following filter:

$$
Y=\left(\frac{225}{s^{2}+15 s+225}\right) X
$$

a) Determine the differential equation relating X and Y

$$
\begin{aligned}
& \left(s^{2}+15 s+225\right) Y=225 x \\
& \frac{d^{2} y}{d t^{2}}+15 \frac{d y}{d t}+225 y=225 x \\
& \ddot{y}+15 \dot{y}+225 y=225 x
\end{aligned}
$$

b) Determine $y(t)$ assuming

$$
x(t)=2+3 \sin (10 t)+4 \sin (100 t)
$$

$x(t)=2$	$x(t)=3 \sin (10 t)$	$x(t)=4 \sin (100 t)$
$s=0$	$s=j 10$	$s=j 100$
$\left(\frac{225}{s^{2}+15 s+225}\right)_{s=0}=1$	$\left(\frac{225}{s^{2}+15 s+225}\right)_{s=j 10}=1.34 \angle-116^{0}$	$\left(\frac{225}{s^{2}+15 s+225}\right)_{s=1100}=0.022 \angle-171^{0}$
$y=(1) \cdot 2$	$y=\left(1.34 \angle-116^{0}\right) \cdot 3 \sin (10 t)$	$y=\left(0.022 \angle-171^{0}\right) \cdot 4 \sin (100 t)$
$y(t)=2$	$y(t)=4.02 \sin \left(10 t-116^{0}\right)$	$y(t)=0.089 \sin \left(100 t-171^{0}\right)$
pass	pass	block

This is a better low-pass filter. The gain at 10 is closer to the DC gain (1.00)

$$
y(t)=2+4.02 \sin \left(10 t-116^{0}\right)+0.089 \sin \left(100 t-171^{0}\right)
$$

c) Design an op-amp circuit to implement this filter.

$$
\begin{aligned}
& \left(\frac{1}{R C}\right)^{2}=225 \\
& \left(\frac{1}{R C}\right)=15
\end{aligned}
$$

Let $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=0.67 \mathrm{uF}$

$$
\begin{aligned}
& \left(\frac{3-k}{R C}\right)=15 \\
& 3-k=1
\end{aligned}
$$

$$
k=2
$$

Let R1 $=$ R2 $=100 \mathrm{k}$

Problem 4) Band Pass Filter: For the following filter:

$$
Y=\left(\frac{2 s}{s^{2}+2 s+10}\right) X
$$

a) Determine the differential equation relating X and Y

$$
\begin{aligned}
& \left(s^{2}+2 s+10\right) Y=(2 s) X \\
& \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=2 \frac{d x}{d t} \\
& \ddot{\mathrm{y}}+2 \dot{y}+10 \mathrm{y}=2 \dot{\mathrm{x}}
\end{aligned}
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+3 \sin (10 t)+4 \sin (100 t)
$$

Use superposition:

$|$| $x(t)=3 \sin (10 t)$ |
| :--- |
| $s=j 10$ |
| $\left(\frac{2 s}{s^{2}+2 s+10}\right)_{s=j 10}=0.2169 \angle-77^{0}$ |
| $y=\left(0.2169 \angle-77^{0}\right) \cdot 3 \sin (10 t)$ |
| $y=0.6508 \sin \left(10 t-77^{0}\right)$ |
| pass |

$\left\{\begin{array}{l}x(t)=4 \sin (100 t) \\ s=j 100 \\ \left(\frac{2 s}{s^{2}+2 s+10}\right)_{s=100}=0.02 \angle-88^{0} \\ y=\left(0.02 \angle-88^{0}\right) \cdot 4 \sin (100 t) \\ y(t)=0.08 \sin \left(100 t-88^{0}\right) \\ \text { block }\end{array}\right.$

This is a band-pass filter. Frequencies close to $3.16 \mathrm{rad} / \mathrm{sec}$ get passed, those far away get blocked.

Add up all the outputs to get $\mathrm{y}(\mathrm{t})$

$$
y(t)=0+0.6508 \sin \left(10 t-77^{0}\right)+0.08 \sin \left(100 t-88^{0}\right)
$$

c) Design an op-amp circuit to implement this filter.

Use the band-pass filter:

$$
\left(\frac{2 s}{s^{2}+2 s+10}\right)=\left(\frac{\left(\frac{1}{R_{1} C}\right) s}{s^{2}+\left(\frac{2}{R_{3} C}\right) s+\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)}\right)
$$

Matching terms:

$$
\left(\frac{1}{R_{1} C}\right)=2
$$

$$
\text { Let } \mathrm{C}=1 \mathrm{uF}
$$

$$
R_{1}=500 k
$$

$$
\left(\frac{2}{R_{3} C}\right)=2
$$

$$
R_{3}=500 k
$$

$$
\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)=10
$$

$$
R_{2}=300 k
$$

