ECE 321 - Final. Name

2-Port Models, Common Emitter Amplifiers. April 26, 2018

1) Determine the voltages and currents for the following push (pull) amplifier. Assume for the transistor

- $\beta=1000$
- $V_{b e}=1.4 \mathrm{~V}$

Assume for the LED

- $\mathrm{Vf}=3.0 \mathrm{~V} @ 300 \mathrm{~mA}$:

V1	I2	I3	V4

2) Determine the voltages and currents for the following push (pull) amplifier. Assume for the transistor

- $\beta=1000$
- $V_{b e}=1.4 \mathrm{~V}$

Assume for the LED

- Vf=3.0V @ 300mA:

V1	12	V3	14

3) Design an instrumentation amplifier so that the output is

- -10 V when $\mathrm{R}=1000$ Ohms
- +10 V when $\mathrm{R}=1200$ Ohms

For your circuit, what is the output voltage (Vout) when $R=1100$ Ohms?

Vout when $\mathrm{R}=1100$:

4) Give the transfer function for a low-pass filter which comes close to meeting the following requirements (fine tuning in Matlab might be required)

- $0.9<$ Gain < 1.1 frequencies less than $200 \mathrm{rad} / \mathrm{sec}$
- Gain <0.1 frequencies above $300 \mathrm{rad} / \mathrm{sec}$

You are free to choose any type of filter you like (Chebychev, Butterworth, Elliptic, etc.)
5) A 3rd-order Butterworth low-pass filter has the following transfer function:

$$
Y=\left(\frac{250}{(s+5)\left(s^{2}+5 s+25\right)}\right) X=\left(\frac{250}{s^{3}+10 s^{2}+50 s+125}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Determine $y(t)$ assuming

$$
x(t)=3 \sin (4 t)+5 \cos (10 t)
$$

6) Find the Thevenin equivalent of R1, R2 (Vb, Rb), and the Q-point (Ic, Vce) for the following transistor circuit. Assume a 3904 transistor:

- $\beta=200$
- $V_{b e}=0.7 \mathrm{~V}$

Vb	Rb	Ic	Vce

7) Find the 2-port model for the following circuit:

Rin	Ai	Ao	Rout

8) Determine the operating point for the following transistor circuit. Assume

- $\beta=200$
- $V_{b e}=0.7 \mathrm{~V}$
- $V_{\text {ce:sat }}=0.2 \mathrm{~V}$

	lc	Ve	Vc

Bernie vs. Godzilla Bonus!! Three of the following are U.S. Senators. Three are Godzilla monsters. Which are the Senators?
Barrasso Ebirah Kiryu Minya Stabenow Wicker

