ECE 321 - Homework \#1

Push-Pull Amplifiers, Instrumentation Amplifiers, Active Filters. Due Wednesday, April 4th, 2018

For all circuits, assume TIP112 (NPN) and TIP117 (PNP) transistors

- $\left|V_{b e}\right|=1.4 \mathrm{~V}$
- $\left|V_{c e(s a t)}\right|=0.9 \mathrm{~V}$
- $\beta=1000$

Push-Pull Amplifiers

1) Determine the voltages and current for the following push-pull amplfiier with

- $\operatorname{Vin}=2 \mathrm{~V}$
- $\mathrm{Vin}=-2 \mathrm{~V}$

2) Verify your design in PartSim
3) Determine the voltages and current for the following push-pull amplfiier with

- $\mathrm{Vin}=2 \mathrm{~V}$
- $\mathrm{Vin}=-2 \mathrm{~V}$

Op-Amp Circuits:

4) Design an op-amp circuit to implement the funcitons

- $\mathrm{Y}=4 \mathrm{X}$
- $Y=-4 X$
- $\mathrm{Y}=4 \mathrm{X}-12$

A light sensor has the following light / resistance relationship:

$$
R=\frac{100,000}{L u x} \Omega
$$

5) Design an instrumentation amplifier whose output is

- 0 V when the light level is 50 Lux
- 10 V when the light level is 100 Lux

6) Design an instrumentation amplifier whose outout is

- -10 V when the light level is 50 Lux
- +10 V when the light level is 100 Lux

Op-Amp Circuits

7) Assume ideal op-amps

- Write the voltage node equations for the following op-amp circuits
- Solve for the voltages V1 .. V4

