ECE 321 - Homework \#4

2-Port Models, DC Bias for Transistors, Common Emitter Amplifier. Due Monday, April 23rd, 2018

2-Port Model

1) Find the 2 -port model for the following circuit
2) Find the 2-port model for the following circuit

Problem 1

Q-Point Design

3) Determine the Q-point for the following circuit. Assume ideal silicon transistor with

- $\beta=100$
- $\left|V_{b e}\right|=0.7 \mathrm{~V}$
- $\min \left(\left|V_{c e}\right|\right)=0.2 V$

4) Change this circuit so that the Q-point is

- Vce $=6 \mathrm{~V}$, and
- Stabilized for variations in β

Common Emitter

5) Determine the 2-port model for the following common emitter amplifier
6) Check your analysis in PartSim with

- A load at Vout of 1M Ohm
- A load at Vout of 2 k Ohms

Is the gain you computed correct?
Is the output impedance you computed correct?

Lab (over)

Lab

7a) Specify the overall requirements for a circuit which incorporates the hardware built in previous homework assignments. For example:

- Input: +/- 1V AC signal capable of driving 1 mA (i.e. a cell phone)
- Output: 8 Ohm Speaker
- Relationship:
- $9<$ gain < 11 for frequencies less than 200 Hz
- gain <1 for frequencies above 600 Hz

7b) Specify how this design is split into three secions and the requirements for each section. For example:
Secion 1: Amplfier

- Input: +/- 1V AC signal capable of driving 1 mA (i.e. a cell phone)
- Output: +/- 10V AC signal capable of driving 1 kOhm
- Relationship: $y=10 x$ ($+/-10 \%$)

Section 2: Filter

- Input: +/- 10V AC signal capable of driving 1 kOhm
- Output: $+/-10 \mathrm{~V}$ AC signal capable of driving 1 kOhm
- Relationship:
- 9 < gain < 11 for frequencies less than 200 Hz
- gain <1 for frequencies above 600 Hz

Section 3: Push-Pull Amplifier

- Input: +/- 10V AC signal capable of driving 1 kOhm
- Output: 8 Ohm speaker
- Relationship: $\mathrm{y}=\mathrm{x}(+/-10 \%)$
(next week - homework \#5): Assembler your three circuits together and collect data to validate
- Each section works separately
- The entire circuit works together

