ECE 321 - Quiz \#5. Name

Common Base, Common Collector Multi-Stage Amplifiers. May 3, 2018

1) Draw the small signal model for the following amplifier. Assume

- $\mathrm{rf}=5000 \mathrm{Ohms}$
- $\beta=200$

2) Determine the 2-port model for the following circuit.

Rin	Ai	Ao	Rout
29.9	0	64.5	2000

Rin: Short Vout.
Apply 1V to Vin
Measure (comute) the current
$I_{i n}=\frac{1}{1 k}+\frac{1}{6200}+\frac{200}{6200}$
$I_{\text {in }}=33.4 m A$
$R_{\text {in }}=\frac{1}{I_{i n}}=29.9 \Omega$

Rout: Short Vin.
Apply 1V to Vout
Compute the current Iout
$I_{b}=0$
$R_{\text {out }}=2 k$

Aout Apply 1V to Vin
Compute Vout
$I_{b}=\frac{-1}{6200}=-161 \mu A$
$200 I_{b}=-32.26 m A$
$V_{o}=-2 k \cdot 200 I_{b}$
$V_{o}=+64.5$
3) Determine the 2-port model for the following circuit.

Rin	Ai	Ao	Rout
1923	0.9615	0.9964	9.91

Rin: Short Vout

$$
\begin{aligned}
& R_{\text {in }}=50 k \| 2 k \\
& R_{\text {in }}=1923
\end{aligned}
$$

Ai: Apply 1V to Vout. Compute Vin
$V_{\text {in }}=\left(\frac{50 k}{50 k+2 k}\right)$
$V_{i n}=0.9615$

Rout: Short Vin
Apply 1V to Vout. Compute Iout
$I_{\text {out }}=\frac{1}{2 k}+\frac{1}{5 k}+\frac{200}{2 k}+\frac{1}{6 k}$
$I_{\text {out }}=100.9 \mathrm{~mA}$
$R_{\text {out }}=\frac{1}{I_{\text {out }}}=9.91 \Omega$
Ao: Apply 1V to Vin. Compute Vout
$\left(\frac{V_{o}-1}{2 k}\right)+\left(\frac{V_{o}}{5 k}\right)+200\left(\frac{V_{o}-1}{2 k}\right)+\left(\frac{V_{o}}{6 k}\right)=0$
$V_{o}=0.9964$
4) Determine the 2-port model for the following circuit

Rin	Ai	Ao	Rout
$5 k$	0	-46.87	78.12

By inspection, looking in on the left all you see is a 5 k resistor:

- Rin $=5 \mathrm{k}$
- $\mathrm{Ai}=0$

Ao: Apply 1V to Vin. Compute Vout (red numbers)
$\left(\frac{V_{2}-(-100)}{4 k}\right)+\left(\frac{V_{2}-0.6 V_{o}}{2 k}\right)=0$
$\left(\frac{V_{2}+100}{4 k}\right)+\left(\frac{V_{2}-0.6 \cdot 0 \cdot 9 \cdot V_{2}}{2 k}\right)=0$
$V_{2}=-52.08$
$V_{o}=0.9 V_{2}=-46.87$
Ro: Short Vin. Apply 1V to Vout. Computer Iout (blue numbers)
$\left(\frac{V_{2}-0}{4 k}\right)+\left(\frac{V_{2}-0.6}{2 k}\right)=0$
$V_{2}=0.4 \mathrm{~V}$
$0.9 V_{2}=0.36 \mathrm{~V}$
$I_{\text {out }}=\left(\frac{1-0.36}{50}\right)=12.8 m A$
$R_{\text {out }}=\frac{1}{I_{\text {out }}}=78.12 \Omega$
5) Determine the 2-port model for the following circuit

Rin	Ai	Ao	Rout
5k	0	$\mathbf{- 3 0 8 , 6 4 1}$	4k

By inspection, looking in on the left all you see is a 5 k resistor

$$
\begin{aligned}
& \operatorname{Rin}=5 \mathrm{k} \\
& \mathrm{Ai}=0
\end{aligned}
$$

Rout: Short Vin. This zeros out everything (blue numbers) so all you see at the output is 4 k to ground

$$
\text { Rout }=4 \mathrm{k}
$$

Ao: Apply 1V at the input. Compute the voltage at the output (red numbers)

$$
\begin{aligned}
& V_{\text {in }}=1 \mathrm{~V} \\
& -100 V_{\text {in }}=-100 \mathrm{~V} \\
& V_{2}=\left(\frac{5 k}{5 k+4 k}\right)(-100 \mathrm{~V})=-55.5 \mathrm{~V} \\
& -100 V_{2}=5555 \mathrm{~V} \\
& V_{3}=\left(\frac{5 k}{5 k+4 k}\right)(5555 \mathrm{~V})=3086 \mathrm{~V} \\
& 100 V_{3}=-308,641
\end{aligned}
$$

Bernie vs. Godzilla Bonus!! Bernie Sanders likes cheese. He doesn't like 200 foot tall monsters stomping upstate Vermont. Three of the following are Godzilla monsters and three are types of cheese. Which are cheese?
Ayibe
Dorat
Garuda
Kefalotyri
Mondseer Shockirus

