ECE 321-Homework \#1

Push-Pull Amplifiers, Instrumentation Amplifiers, Active Filters. Due Wednesday, April 4th, 2018

For all circuits, assume TIP112 (NPN) and TIP117 (PNP) transistors

- $\left|V_{b e}\right|=1.4 \mathrm{~V}$
- $\left|V_{c e(s a t)}\right|=0.9 \mathrm{~V}$
- $\beta=1000$

Push-Pull Amplifiers

1) Determine the voltages and current for the following push-pull amplfiier with Vin $=2 \mathrm{~V}$

2) Verify your design in PartSim

Push: At +2 V , the NPN does almost all of the work (provides 726 mA)
$Q \| Q$

Pull: At -2 V , the PNP does almost all of the work (747 mA)

3) Determine the voltages and current for the following push-pull amplfiier with

- $\operatorname{Vin}=2 \mathrm{~V}$
- $\operatorname{Vin}=-2 \mathrm{~V}$

Op-Amp Circuits:

4) Design an op-amp circuit to implement the funcitons

$$
Y=4 X
$$

$Y=-4 X$

$\mathrm{Y}=4 \mathrm{X}-12=4(\mathrm{X}-3)$

A light sensor has the following light / resistance relationship:

$$
R=\frac{100,000}{L u x} \Omega
$$

5) Design an instrumentation amplifier whose output is

- 0 V when the light level is 50 Lux
- 10 V when the light level is 100 Lux

Assume a voltage divider with $\mathrm{a}+10 \mathrm{~V}$ input and a 1 k resistor:
50 Lux

- $\mathrm{R}=2000$ Ohms
- $\mathrm{Va}=6.666 \mathrm{~V}$
- $\mathrm{Vo}=0 \mathrm{~V}$

100 Lux

- $\mathrm{R}=1000$ Ohms
- $\mathrm{Va}=5.00 \mathrm{~V}$
- $\mathrm{Vo}=+10 \mathrm{~V}$

Since the output increases when the input decreases, connect to the - input
The ouput is 0 V when the input is 6.666 V . Set the offset to 6.666 V
The gain is

$$
\text { gain }=\left(\frac{\text { ooutput }}{\text { } \text { input }}\right)=\left(\frac{10 \mathrm{~V}-0 \mathrm{~V}}{6.666 \mathrm{~V}-5.00 \mathrm{~V}}\right)=6
$$

Pick a 6:1 ratio for the resistors:

6) Design an instrumentation amplifier whose outout is

- -10 V when the light level is 50 Lux
- +10 V when the light level is 100 Lux

Assume a voltage divider with $\mathrm{a}+10 \mathrm{~V}$ input and a 1 k resistor:
50 Lux

- $\mathrm{R}=2000$ Ohms
- $\mathrm{Va}=6.666 \mathrm{~V}$
- $\mathrm{Vo}=-10 \mathrm{~V}$

100 Lux

- $\mathrm{R}=1000$ Ohms
- $\mathrm{Va}=5.00 \mathrm{~V}$
- $\mathrm{Vo}=+10 \mathrm{~V}$

Since the output increases when the input decreases, connect to the - input
The gain is

$$
\operatorname{gain}=\left(\frac{10 V-10 V}{6.666 V-5.00 V}\right)=12
$$

At 100 Lux

$$
\begin{aligned}
& Y=\operatorname{gain}\left(V_{p}-V_{m}\right) \\
& 10=12\left(V_{p}-5\right) \\
& V_{p}=5.8333
\end{aligned}
$$

Op-Amp Circuits

7) Assume ideal op-amps

Write the voltage node equations for the following op-amp circuits
@ $\mathrm{V} 2 \quad V_{1}=1$
@V4 $\quad V_{3}=1$

$$
\begin{aligned}
& \left(\frac{V_{1}-2}{100 k}\right)+\left(\frac{V_{1}-V_{2}}{100 k}\right)=0 \\
& \left(\frac{V_{3}-V_{2}}{100 k}\right)+\left(\frac{V_{3}-V_{4}}{100 k}\right)+\left(\frac{V_{3}-3}{10 k}\right)=0
\end{aligned}
$$

Solve for the voltages V1 .. V4

$$
\begin{aligned}
V_{2} & =0 V \\
V_{4} & =9 V
\end{aligned}
$$

