ECE 321 - Homework \#2

Active Filters, Poles, Zeros, \& Frequency Response. Due Monday, April 9th, 2018

1) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{2000}{(s+5)(s+6)(s+7)}\right) X=\left(\frac{2000}{s^{3}+18 s^{2}+107 s+210}\right) X
$$

1a) What is the differential equation relating X and Y ?
Cross multiply

$$
\left(s^{3}+18 s^{2}+107 s+630\right) Y=(2000) X
$$

'sY' means the derivative of y

$$
y^{\prime \prime \prime}+18 y^{\prime \prime}+107 y^{\prime}+210 y=2000 x
$$

1b) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (10 t)
$$

Treat this as two separate problems

$$
\begin{array}{ll}
x(t)=2 & x(t)=3 \cos (10 t) \\
\mathrm{s}=0 & \mathrm{~s}=\mathrm{j} 10 \\
Y=\left(\frac{2000}{(s+5)(s+6)(s+7)}\right)_{s=0} \cdot X & X=3+j 0 \\
Y=(9.52) \cdot(2) & Y=\left(\frac{2000}{(s+5)(s+6)(s+7)}\right)_{s=j 0} \cdot(3+j 0) \\
y(t)=19.04 & Y=(-1.25-j 0.055) \cdot(3+j 0) \\
& Y=-3.76-j 0.16 \\
& y(t)=-3.76 \cos (10 t)+0.16 \sin (10 t)
\end{array}
$$

Put them together:

$$
y(t)=19.04-3.76 \cos (10 t)+0.16 \sin (10 t)
$$

1c) Plot the gain vs. frequency for this filter from $0<\mathrm{w}<20 \mathrm{rad} / \mathrm{sec}$

```
>> w = [0:0.01:20]';
>> s = j*w;
>> G = 2000 ./ ( (s+5).*(s+6).*(s+7) );
>> plot(w,abs(G))
```


1d) Design an op-amp circuit to implement this filter.

2) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{2000}{(s+10)(s+5+j 8.67)(s+5-j 8.67)}\right) X=\left(\frac{2000}{s^{3}+20 s^{2}+200 s+1000}\right) X
$$

2a) What is the differential equation relating X and Y ?
Cross multiply

$$
\left(s^{3}+20 s^{2}+200 s+1000\right) Y=(2000) X
$$

This means

$$
y^{\prime \prime \prime}+20 y^{\prime \prime}+200 y^{\prime}+1000 y=2000 x
$$

2b) Determine $y(t)$ assuming

$$
x(t)=2+3 \cos (10 t)
$$

Treat this as two separate problems
$x(t)=2$

$$
\begin{aligned}
& \mathrm{s}=0 \\
& Y=\left(\frac{2000}{s^{3}+20 \mathrm{~s}^{2}+200 s+1000}\right)_{s=0} \cdot X \\
& Y=(2) \cdot 2 \\
& y(t)=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=3 \cos (10 \mathrm{t}) \\
& \mathrm{s}=\mathrm{j} 10 \\
& \mathrm{X}=3+\mathrm{j} 0 \\
& Y=\left(\frac{2000}{s^{3}+20 s^{2}+200 s+1000}\right)_{s=j 10} \cdot(3+j 0) \\
& Y=(-1-j) \cdot(3+j 0) \\
& Y=-3-j 3 \\
& y(t)=-3 \cos (10 t)+3 \sin (10 t)
\end{aligned}
$$

Put it together

$$
y(t)=4-3 \cos (10 t)+3 \sin (10 t)
$$

2c) Plot the gain vs. frequency for this filter from $0<\mathrm{w}<20 \mathrm{rad} / \mathrm{sec}$

```
>> w = [0:0.01:20]';
>> s = j*w;
>> G = 2000 ./ ( s.^3 + 20*s.^2 + 200*s + 1000);
>> plot(w,abs(G))
```


2d) Design an op-amp circuit to impliment this filter.
Rewrite this as two filters cascaded

$$
\begin{aligned}
& Y=\left(\frac{10}{s+10}\right)\left(\frac{200}{(s+5+j 8.67)(s+5-j 8.67)}\right) X \\
& Y=\left(\frac{10}{s+10}\right)\left(\frac{200}{\left(s+10 \angle 60^{\circ}\right)\left(s+10 \angle-60^{\circ}\right)}\right) X
\end{aligned}
$$

This is an RC filter $(1 / R C=10)$ and a 2nd-order low-pass filter

$$
\frac{1}{R C}=10
$$

Let $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=1 \mathrm{uF}$

$$
\begin{aligned}
& 3-k=2 \cos \theta \\
& 3-k=2 \cos \left(60^{0}\right) \\
& k=2=\left(1+\frac{R_{2}}{R_{1}}\right)
\end{aligned}
$$

Let R1 = R2 = 100k

3) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{4 s}{(s+2+j 9.8)(s+2-j 9.8)}\right) X=\left(\frac{4 s}{s^{2}+4 s+100}\right) X
$$

3a) What is the differential equation relating X and Y ?
Cross multiply

$$
\left(s^{2}+4 s+100\right) Y=(4 s) X
$$

this means

$$
y^{\prime \prime}+4 y^{\prime}+100 y=4 x^{\prime}
$$

3b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+3 \cos (10 t)
$$

Treat this as two separate problems

$$
\begin{array}{ll}
\mathrm{x}(\mathrm{t})=2 & \mathrm{x}(\mathrm{t})=3 \cos (10 \mathrm{t}) \\
\mathrm{s}=0 & \mathrm{~s}=\mathrm{j} 10 \\
\mathrm{X}=2 & \mathrm{X}=3+\mathrm{j} 0 \\
Y=\left(\frac{4 \mathrm{~s}}{s^{2}+4 \mathrm{~s}+100}\right)_{s=0} \cdot X & Y=\left(\frac{4 \mathrm{~s}}{s^{2}+4 \mathrm{~s}+100}\right)_{\mathrm{s}=\mathrm{j} 10} \cdot X \\
Y=(0) \cdot(2) & Y=(1+j 0) \cdot(3+j 0) \\
Y=0 & Y=3+j 0 \\
y(t)=0 & y(t)=3 \cos (10 t)
\end{array}
$$

Put it together

$$
y(t)=0+3 \cos (10 t)
$$

3c) Plot the gain vs. frequency for this filter from $0<\mathrm{w}<20 \mathrm{rad} / \mathrm{sec}$

3d) Design an op-amp circuit to impliment this filter.

$$
\boldsymbol{Y}=\left(\frac{-\left(\frac{1}{R_{1} C}\right) s}{s^{2}+\left(\frac{2}{R_{3} C}\right) s+\left(\frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3} C^{2}}\right)}\right) X=\left(\frac{4 s}{s^{2}+4 s+100}\right) X
$$

Let $C=1 u F$

$$
\begin{array}{ll}
\left(\frac{1}{R_{1} C}\right)=4 & \mathrm{R} 1=250 \mathrm{k} \\
\left(\frac{2}{R_{3} C}\right)=4 & \mathrm{R} 3=500 \mathrm{k} \\
\left(\frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3} C^{2}}\right)=100 & \mathrm{R} 2=21,739
\end{array}
$$

4) Lab: Build a push-pull amplifier to meet the following requirements:

- Input: +/- 10V signal capable of driving 10 mA (1 k Ohm)
- Output: 8 Ohm speaker
- Relationship: Y = X +/- 0.5 Volts from DC to 10 kHz .

Collect data to verify your push-pull amplifier is working (save your circuit - we'll use it next week)

