ECE 321 Final - Name

Closed-Book, Closed Notes, Calculators Permitted. - Spring 2019

1) Push Pull AmplifiersDetermine the voltages and currents for the following push-pull amplifier. Assume TIP transistors:

- $\beta=1000$
- $\left|V_{b e}\right|=1.4 V$
- $\min \left(\left|V_{c e}\right|\right)=0.9 V$

I1	I2	V3	V4	V5

2a) Determine the relationship between X and Y from the following graph.

2b) Design an op-amp circuit to match the following relationship between X and Y :

3) Design a circuit which outputs

- -10 V when $\mathrm{R}=1800$ Ohms
- +10 V when $\mathrm{R}=2000$ Ohms

4) The following circuit uses a linearizing circuit with an instrumentation amplifier. Determine the voltages at V1..V4

V1	V2	V3	V4

5) X and Y are related by the following filter

$$
Y=\left(\frac{2 s+7}{s^{2}+2 s+17}\right) X=\left(\frac{2 s+7}{(s+1+j 4)(s+1-j 4)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Find $y(t)$ assuming

$$
x(t)=5+6 \sin (10 t)
$$

6) The transfer function for a 4th-order Butterworth low-pass filter with a corner at $100 \mathrm{rad} / \mathrm{sec}$ is

$$
Y=\left(\frac{100^{4}}{\left(s+100 \angle 22.5^{0}\right)\left(s+100 \angle-22.5^{0}\right)\left(s+100 \angle 67.5^{0}\right)\left(s+100 \angle 67.5^{0}\right)}\right) X
$$

Find R and C to implement this filter

C1	R1	C2	R2

Note: The transfer function for the first stage is

$$
\begin{aligned}
& \left(\frac{k\left(\frac{1}{R C}\right)^{2}}{s^{2}+\left(\frac{3-k}{R C}\right) s+\left(\frac{1}{R C}\right)^{2}}\right) \quad k=1+\frac{R_{1}}{100,000} \\
& 3-k=2 \cos \theta
\end{aligned}
$$

7) Q-Point Analysis. Determine the Thevenin equivalent for R 1 and $\mathrm{R} 2(\mathrm{Vb}$ and Rb$)$ and determine the Q -point for the following transistor circuit. Assume ideal silicon transistors:

- $V_{b e}=0.7 \mathrm{~V}$
- $\beta=200$

Vb	Rb	Vce	Ic

8) Draw the small signal model for the following common emitter amplifier (with Ce removed) and determine the corresponding 2-port model

Small Signal Model	Rin	Ao	Rout
draw the AC model.			
Assume $\mathrm{Zc}=0$			

Bonus! Four for the following are Democratic canidates running for President in 2020, four are Godzilla monsters. Circle the ones who are Democrats

Baragon - Buttigieg - Ebirah - Gabbard - Kamacuras - Messam - Orga - Swalwell

