1) Push Pull AmplifiersDetermine the voltages and currents for the following push-pull amplifier. Assume TIP transistors:

- $\beta=1000$
- $\left|V_{b e}\right|=1.4 V$
- $\min \left(\left|V_{c e}\right|\right)=0.9 V$

I 1	I 2	V 3	V 4	V 5
1.32 mA	1.32 A	12 V saturaed $a+$ Vcc	10.6 V	1.77 V

Assume $\mathrm{Vp}=\mathrm{Vm}$.

- $\mathrm{V} 5=2 \mathrm{~V}$
- $\mathrm{V} 4=12 \mathrm{~V}$ (can't happen with a 12 V supply)

Assume the op-amp is maxed out at Vcc $(+12 \mathrm{~V})$

- $\mathrm{V} 3=12 \mathrm{~V}$
- $\mathrm{V} 4=\mathrm{V} 3-1.4 \mathrm{~V}=10.6 \mathrm{~V}$
- $\mathrm{V} 5=\mathrm{V} 4 / 6=1.77 \mathrm{~V}$

2a) Determine the relationship between X and Y from the following graph.

2b) Design an op-amp circuit to match the following relationship between X and Y :

$$
y=10(x-3)
$$

3) Design a circuit which outputs

- -10 V when $\mathrm{R}=1800$ Ohms
- +10 V when $\mathrm{R}=2000$ Ohms

Assume a 2k resistor
When $\mathrm{R}=1800$

$$
X=\left(\frac{1800}{1800+2000}\right) 10 V=4.7368 V
$$

When $\mathrm{R}=2000$

$$
\begin{aligned}
& X=\left(\frac{2000}{2000+2000}\right) 10 \mathrm{~V}=5.00 \mathrm{~V} \\
& \text { gain }=\left(\frac{20 \mathrm{~V}}{5.00 \mathrm{~V}-4.7368 \mathrm{~V}}\right)=76.0 \\
& \text { offset }=\left(\frac{5.00 \mathrm{~V}+4.7368 \mathrm{~V}}{2}\right)=4.86 \mathrm{~V}
\end{aligned}
$$

4) The following circuit uses a linearizing circuit with an instrumentation amplifier. Determine the voltages at V1..V4

V 1	V 2	V 3	V 4
$\mathbf{3 . 0 8 0 5} \mathrm{~V}$	$\mathbf{4}$ V	$\mathbf{4}$ V	$\mathbf{7 . 6 8} \mathrm{V}$

$V_{2}=\left(\frac{4 k}{4 k+1 k}\right) 5 V=4 V$
$V_{3}=V_{2}=4 \mathrm{~V}$
$\left(\frac{V_{1}}{1700}\right)+\left(\frac{V_{1}}{1200}\right)+\left(\frac{V_{1}-10}{2000}\right)+\left(\frac{V_{1}-4}{1000}\right)=0 \quad \Rightarrow V_{1}=3.08 \mathrm{~V}$
$V_{4}=\left(\frac{4 k}{1 k}\right)\left(5-V_{1}\right)=7.68 \mathrm{~V}$
5) X and Y are related by the following filter

$$
Y=\left(\frac{2 s+7}{s^{2}+2 s+17}\right) X=\left(\frac{2 s+7}{(s+1+j 4)(s+1-j 4)}\right) X
$$

a) What is the differential equation relating X and Y ? cross multiply

$$
\left(s^{2}+2 s+17\right) Y=(2 s+7) X
$$

'sY' means 'the deriative of Y '

$$
y^{\prime \prime}+2 y^{\prime}+17 y=2 x^{\prime}+7 x
$$

b) Find $y(t)$ assuming

$$
x(t)=5+6 \sin (10 t)
$$

Use superposition

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=5 \\
& \mathrm{X}=5 \\
& \mathrm{~s}=0 \\
& Y=\left(\frac{2 s+7}{s^{2}+2 s+17}\right) X \\
& Y=\left(\frac{2 s+7}{s^{2}+2 s+17}\right)_{s=0} . \\
& Y=\left(\frac{7}{17}\right) \cdot 5 \\
& Y=2.0588
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}(\mathrm{t})=6 & \sin (10 \mathrm{t}) \\
\mathrm{X} & =0-\mathrm{j} 6 \\
\mathrm{~s} & =\mathrm{j} 10 \\
Y & =\left(\frac{2 s+7}{s^{2}+2 s+17}\right) X \\
Y & =\left(\frac{2 s+7}{s^{2}+2 s+17}\right)_{s=j 10} \cdot(0-j 6) \\
Y & =-1.48+j 0.15
\end{aligned}
$$

real means cosine, -imag means sine

$$
y(t)=-1.48 \cos (10 t)-0.15 \sin (10 t)
$$

$y(t)=2.0588-1.48 \cos (10 t)-0.15 \sin (10 t)$
6) The transfer function for a 4th-order Butterworth low-pass filter with a corner at $100 \mathrm{rad} / \mathrm{sec}$ is

$$
Y=\left(\frac{100^{4}}{\left(s+100 \angle 22.5^{0}\right)\left(s+100 \angle-22.5^{0}\right)\left(s+100 \angle 67.5^{0}\right)\left(s+100 \angle 67.5^{0}\right)}\right) X
$$

Find R and C to implement this filter

C 1	R 1	C 2	R 2
$\mathbf{0 . 1} \mathbf{u F}$	15 k	$\mathbf{0 . 1} \mathbf{u F}$	123 k

Note: The transfer function for the first stage is

$$
\begin{aligned}
& \left(\frac{k\left(\frac{1}{R C}\right)^{2}}{s^{2}+\left(\frac{3-k}{R C}\right) s+\left(\frac{1}{R C}\right)^{2}}\right) \quad k=1+\frac{R_{1}}{100,000} \\
& 3-k=2 \cos \theta
\end{aligned}
$$

$$
\begin{array}{rl}
\left(\frac{1}{R C}\right)=100 & \left(\frac{1}{R C}\right) \\
& =100 \\
\mathrm{R}=100 \mathrm{k} & \mathrm{R}=100 \mathrm{k} \\
\mathrm{C} 1=0.1 \mathrm{uF} & \mathrm{C} 2=0.1 \mathrm{uF}
\end{array}
$$

$$
\begin{aligned}
3-k & =2 \cos \theta \\
\theta & =22.5^{0} \\
k & =1.15 \\
k & =1+\left(\frac{R_{1}}{100 k}\right)
\end{aligned}
$$

$$
3-k=2 \cos \theta
$$

$$
\theta=67.5^{0}
$$

$$
k=2.2346
$$

$$
k=1+\left(\frac{R_{2}}{100 k}\right)
$$

7) Q-Point Analysis. Determine the Thevenin equivalent for R1 and R2 (Vb and Rb) and determine the Q-point for the following transistor circuit. Assume ideal silicon transistors:

- $V_{b e}=0.7 \mathrm{~V}$
- $\beta=200$

Vb	Rb	Vce	Ic
$\mathbf{2 V}$	$\mathbf{4 1 . 6 7 k}$	$\mathbf{8 . 7 6 7 V}$	$\mathbf{4 0 3 . 3} \mathrm{VA}$

$R_{b}=R_{1} \| R_{2}=41.67 \mathrm{k}$
$V_{b}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 V=2 V$
$I_{b}=\left(\frac{2 V-0.7 V}{R_{b}+(1+\beta) R_{e}}\right)=2.01 \mu A$
$I_{c}=200 I_{b}=403.3 \mu \mathrm{~A}$
$V_{c e}=12-5 k \cdot I_{c}-3 k \cdot\left(I_{b}+I_{c}\right)=8.767 \mathrm{~V}$
8) Draw the small signal model for the following common emitter amplifier (with Ce removed) and determine the corresponding 2-port model

Small Signal Model	Rin	Ao	Rout
draw the AC model. Assume $\mathrm{Zc}=0$	$\mathbf{1 0 6 k}$	$\mathbf{- 1 . 9 4}$	2k

Due to the current source the 1 k resistor looks like a 201k resistor looking from the left
$R_{\text {in }}=400 k$ || $500 k$ || $4771+201 k$
$R_{\text {in }}=106 k$
$A_{0}=-\left(\frac{200 \cdot 2 k}{4771+201 k}\right)=-1.944$

Bonus! Four for the following are Democratic canidates running for President in 2020, four are Godzilla monsters. Circle the ones who are Democrats

