ECE 321-Quiz \#2 - Name

Temperature, Strain, Instrumentation Amplifiers. April 11, 2019

1) Temperature Sensor: Assume a temperature sensor has the following characteristics:

$$
R=1000(1+0.0043 \cdot T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- -10 V at -40 C and
- +10 V at +40 C
$+40 \mathrm{C}($ Vout $=+10 \mathrm{~V})$

$$
-40 \mathrm{C}(\text { Vout }=-10 \mathrm{~V})
$$

$$
R=1172 \Omega
$$

$$
R=828 \Omega
$$

$$
X=\left(\frac{1172}{1172+1000}\right) 10 V=5.3959 \mathrm{~V}
$$

$$
X=\left(\frac{828}{828+1000}\right) 10 V=4.5295 \mathrm{~V}
$$

$$
\text { gain }=\left(\frac{20 V}{5.3959 V-4.5295 V}\right)=23.08
$$

$$
\text { offset }=\left(\frac{5.3959 \mathrm{~V}+4.5295 \mathrm{~V}}{2}\right)=4.9627 \mathrm{~V}
$$

the output should be 0V at the middle voltage

1b) For your circuit, what is the output votlage at 0 C ?

$$
\begin{aligned}
& \left(\frac{X}{1 k}\right)+\left(\frac{X-10}{1 k}\right)+\left(\frac{X}{240.8 k}\right)=0 \\
& X=4.9896 V \\
& Y=23.8(4.9896-4.9627)=0.6412 \mathrm{~V}
\end{aligned}
$$

2) Strain Sensor (take 1). A pressure sensor uses a stain gage to measure the flex of a beam. Assume

- The length of the beam is 200 mm
- The thickness of the beam is 2 mm
- The beam deflects 10 mm when the air pressure is $100 \mathrm{~N} / \mathrm{m} 2$

Determine the strain on the inside edge and the outside edge. Assume the center line has no strain (free endpoints)

Radius (R)	Strain (inside edge)	Strain (outside edge)
505 mm	$\mathbf{+ 0 . 0 0 1 9 8}$	$\mathbf{- 0 . 0 0 1 9 8}$
	+0.0067	+0.0106

$$
\begin{aligned}
& R^{2}=(R-10)^{2}+100^{2} \\
& R=505 \mathrm{~mm} \quad \text { inside surface } \\
& R=506 \mathrm{~mm} \quad \text { center line }
\end{aligned}
$$

assuming free endpoints (center line has no strain)

$$
\begin{aligned}
& \varepsilon=\left(\frac{-1 \mathrm{~mm}}{506 \mathrm{~mm}}\right)=-0.00198 \text { inside } \\
& \varepsilon=\left(\frac{+1 \mathrm{~mm}}{506 \mathrm{~mm}}\right)=+0.00198 \text { outside }
\end{aligned}
$$

assuming fixed endpoints (beam stretches)

$\theta=2 \cdot \arctan \left(\frac{100 \mathrm{~mm}}{495 \mathrm{~mm}}\right)=0.3987 \mathrm{rad}$
$L_{\text {inside }}=505 \mathrm{~mm} \cdot 0.3987 \mathrm{rad}=201.33 \mathrm{~mm}$
$\varepsilon_{\text {inside }}=\left(\frac{201.33-200}{200}\right)=+0.0067$
$L_{\text {outside }}=507 \mathrm{~mm} \cdot 0.3987 \mathrm{rad}=202.128 \mathrm{~mm}$
$\varepsilon_{\text {outside }}=\left(\frac{202.128-200}{200}\right)=+0.0106$
3) Strain Sensor (take 2). Assume a strain sensor has a resistance of

$$
R=120(1+2.14 \varepsilon)
$$

where ε is the strain. Design a circuit which outputs

- 0 V when the strain is 0 and
- +10 V when the strain is +0.001

0 Strain 0.001 strain

$$
\begin{array}{ll}
R=120 \Omega & R=120.2568 \Omega \\
X=5.00 V & X=\left(\frac{R}{R+120}\right) 10 V=5.0053 V
\end{array}
$$

Gain

$$
\operatorname{gain}=\left(\frac{10 \mathrm{~V}}{5.0053-5.000}\right)=1871
$$

Output is 0 V when strain $=0$ when $\mathrm{X}=5.000 \mathrm{~V}$

4) The following circuit uses a linearizing circuit with an instrumentation amplifier. Determine the voltages at V1..V4

V 1	V 2	V 3	V 4
3.1379 V	3.00 V	3.00 V	2.5862 V

$\left(\frac{V_{1}-10}{1 k}\right)+\left(\frac{V_{1}}{1400}\right)+\left(\frac{V_{1}}{700}\right)+\left(\frac{V_{1}}{4000}\right)=0$
$V_{1}=3.1379 \mathrm{~V}$
$V_{2}=\left(\frac{3 k}{3 k+1 k}\right) 4 V=3 V$
$V_{3}=V_{2}=3 \mathrm{~V}$
$V_{4}=\left(\frac{3 k}{1 k}\right)\left(4 V-V_{1}\right)=2.5862 V$
5) Let $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ be -10 V to +10 V analog voltages capable of driving 20 mA (or less). Design a circuit to implement

$$
Y=2 A+3 B-4 C
$$

4 Op-Amp Design:

1 Op-Amp Design

Bonus: All but three of the following countries have tuition-free college. Which three?
Brazil - Canada - Germany - Finland - France - Norway - Slovenia - Sweden - United States United States:

- \$9,700/y (public)
- \$37,000/y (private)

Canada:

- $\$ 1,288 / \mathrm{y}$

France:

- \$200 / y

