ECE 321 - Quiz #3 - Name

Filters, Common Emitter Amplifiers. April 25, 2019

- 1) Calibration. Assume a circuit is built which outputs -10V to +10V as light changes from 10 Lux to 100 Lux.
 - Determine a calibration function of the form

 $Lux \approx aV + b$

• What is the light level (actual and estimated) when V = 5.0V?

Lux = aV + b		Lux when $V = 5.00V$	
a	Ъ	Actual Lux	Estimated Lux from curve fit
4.72	62	92	86

2) X and Y are related by the following filter

$$Y = \left(\frac{5}{s^2 + 3s + 2}\right)X = \left(\frac{5}{(s+1)(s+2)}\right)X$$

a) What is the differential equation relating X and Y?

$$(s^2 + 3s + 2)Y = 5X$$

 $y'' + 3y' + 2y = 5Z$

b) Find y(t) assuming

$$x(t) = 10 + 15\cos(3t)$$

DC

$$X=10$$
 $X=15+60$
 $Y=(5)$ $Y=(5)$

3) A filter is to meet the following requirements

• 0.9 < Gain < 1.1

for frequencies below 40 rad/sec

• Gain < 0.2

for frequencies above 60 rad/sec

a) How many poles does this filter need?

$$(\frac{40}{60})^n < 0.00$$
 $(\frac{40}{60})^n < 0.00$
 $(\frac{10}{60})^n < 0.00$
 $(\frac{10}{60})^n < 0.00$
 $(\frac{10}{60})^n < 0.00$

b) Give the transfer function for a Butterworth low-pass filter which meets these requirements (note: the corner frequency might need adjusting)

4) Find R and C so that the following filter has the transfer function of

$$Y = \left(\frac{1000}{(s+4)(s+6)(s+8)}\right)X$$

C1	C2	C3	R
250UF	16uF	1.25uF	420.8K

$$Y \approx \left(\frac{1 + \frac{R}{100k}}{(R_1 C_1 s + 1)(R_2 C_2 s + 1)(R_3 C_3 s + 1)}\right) X$$

DC gam =
$$(-)_{820} = 5.208$$

= $1 + \frac{R}{100K}$
 $R = 4248K$

5) The transfer function for a 4th-order Chebychev low-pass filter with a corner at 100 rad/sec is

$$Y = \left(\frac{72^2 \cdot 111^2}{\left(s + 72\angle 38.5^0\right)\left(s + 72\angle -38.5^0\right)\left(s + 111\angle 77.8^0\right)\left(s + 111\angle 77.8^0\right)}\right)X$$

Find R and C to implement this filter

C1	R1	C2	R2
139nF	43.5k	90.09nF	157k

Note: The transfer function for the first stage is

$$\left(\frac{k(\frac{1}{RC})^2}{s^2 + (\frac{3-k}{RC})s + (\frac{1}{RC})^2}\right) \qquad k = 1 + \frac{R_1}{100,000}$$

$$k = 1 + \frac{R_1}{100,000}$$

$$3 - k = 2\cos\theta$$

Bonus: Which is more:

- The number of Democrats who have announced that they are running for President in 2020, or
- The number of Godzilla movies that have been made?