ECE 321 - Quiz #4 - Name _____

Common Emitter - Common Base - Common Collector Amplifiers. May 2, 2019

- 1) Q-Point Analysis. Determine the Thevenin equivalent for R1 and R2 (Vb and Rb) and determine the Q-point for the following transistor circuit. Assume ideal silicon transistors:
 - $V_{be} = 0.7V$
 - $\beta = 200$

Vb	Rb	Vce	Ic

- 2) Q-Point Design. Find Rb and Vb and the corresponding R1 and R2 so that
 - The Q-point is stabilized for variations in β (i.e. $(1+\beta)R_e >> R_b$)
 - $V_{ce} = 6.0V$

R1	R2	Vb	Rb

3) AC Anaysis: Common Emitter.

- Draw the small signal model for the following common emitter amplifier. Assume $r_{\rm f}=17.3k$ Determine the 2-port model for this common emitter amplifier

Small-Signal Model	Rin	Ao	Rout
draw			

3) AC Anaysis: Common Base.

- Draw the small signal model for the following common base amplifier. Assume $r_{\rm f} = 17.3 k$
- Determine the 2-port model for this common emitter amplifier

Small-Signal Model	Rin	Ao	Rout
draw			

5) Multi-Stage Amplifier: Determine the 2-port model for the following 3-stage amplifier:

CB: CE: CE

Rin	Ai	Rout	Ao

