ECE 321-Quiz \#4 - Name

Common Emitter - Common Base - Common Collector Amplifiers. May 2, 2019

1) Q-Point Analysis. Determine the Thevenin equivalent for R1 and R2 (Vb and Rb) and determine the Q-point for the following transistor circuit. Assume ideal silicon transistors:

- $V_{b e}=0.7 \mathrm{~V}$
- $\beta=200$

Vb	Rb	Vce	Ic
$\mathbf{2 . 0 ~ V}$	$\mathbf{8 3 . 3 k}$ Ohms	$\mathbf{7 . 4 2 ~ V}$	914 uA

$$
R_{b}=R_{1} \| R_{2}=83.3 k
$$

$$
V_{b}=\left(\frac{100 k}{100 k+500 k}\right) 12 V=2.0 \mathrm{~V}
$$

$$
-2+83.3 k \cdot I_{b}+0.7+1 k\left(I_{b}+200 I_{b}\right)=0
$$

$$
I_{b}=\left(\frac{2 V-0.7 V}{83.3 k+(201) 1 k}\right)=4.57 \mu \mathrm{~A}
$$

$$
I_{c}=200 I_{b}=914 \mu A
$$

$V_{c e}=12-4 k \cdot I_{c}-1 k \cdot\left(I_{c}+I_{b}\right)=7.42 \mathrm{~V}$
2) Q-Point Design. Find Rb and Vb and the corresponding R1 and R2 so that

- The Q-point is stabilized for variations in β (i.e. $\left.(1+\beta) R_{e} \gg R_{b}\right)$
- $V_{c e}=6.0 \mathrm{~V}$

R1	R2	Vb	Rb
$\mathbf{1 1 8 . 5 k}$	$\mathbf{2 4 . 1 k}$	$\mathbf{2 . 0 2 6 V}$	20k

To stabilize the Q-point

$$
R_{b} \ll(1+\beta) R_{e}=201 \mathrm{k}
$$

Let $\mathrm{Rb}=20 \mathrm{k}$.

$$
\begin{aligned}
& I_{c} \approx \frac{12 \mathrm{~V}-6 \mathrm{~V}}{4 k+1 k}=1.2 \mathrm{~mA} \\
& I_{b}=\frac{I_{c}}{200}=6 \mu \mathrm{~A} \\
& V_{b}=1 k\left(I_{b}+I_{c}\right)+0.7+20 k \cdot I_{b}=2.026 \mathrm{~V}
\end{aligned}
$$

To find R1 and R2

$$
\begin{aligned}
& \left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=20 k \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=2.026 \mathrm{~V}
\end{aligned}
$$

3) AC Anaysis: Common Emitter.

- Draw the small signal model for the following common emitter amplifier. Assume $\mathrm{r}_{\mathrm{f}}=17.3 \mathrm{k}$
- Determine the 2-port model for this common emitter amplifier

Small-Signal Model	Rin	Ao	Rout
draw	11.39 K	-57.8	5 K

$R_{\text {in }}=40 k| | 200 k \mid 17.3 k=11.39 k$
$R_{\text {out }}=5 k$
$A_{o}=-\left(\frac{200.5 k}{17.3 k}\right)=-57.8$
3) AC Anaysis: Common Base.

- Draw the small signal model for the following common base amplifier. Assume $\mathrm{r}_{\mathrm{f}}=17.3 \mathrm{k}$
- Determine the 2-port model for this common emitter amplifier

Small-Signal Model	Rin	Ao	Rout
draw	$\mathbf{8 2 . 5 2}$	$\mathbf{5 7 . 8}$	$\mathbf{5 k}$

Rin: Appy 1V at the input, short the output, and compute the resulting current
$I=\left(\frac{1 V}{2 k \Omega}\right)+\left(\frac{1 V}{17.3 k \Omega}\right)+200\left(\frac{1 V}{17.3 k \Omega}\right)$
$I=12.12 \mathrm{~mA}$
$R_{\text {in }}=\frac{1 V}{12.12 \mathrm{~mA}}=82.52 \Omega$
Rout: Short Vin, measure Rout

$$
\text { Rout }=5 k
$$

Ao: Apply 1V at Vin, measure Vout

$$
A_{0}=+\left(\frac{200 \cdot 5 k}{17.3 k}\right)=+57.8
$$

5) Multi-Stage Amplifier: Determine the 2-port model for the following 3-stage amplifier:

CB : CE : CE

Rin	Ai	Rout	Ao
$\mathbf{2 0}$		$\mathbf{0}$	$\mathbf{2 k}$
$\mathbf{+ 1 1 1 , 1 0 0}$			

Socialism vs. Capitalism Bonus! What does capitalism say about how wealth is distributed?

