ECE 321 - Solution to Homework \#3

Calibration and Filters. Due Monday, April 15th

A light sensor has a lux vs. resistance relationship of

$$
R=\frac{100,000}{L u x}
$$

1) Design a circuit which output -10 V to +10 V as the light level changes from 10 Lux to 100 Lux.

$$
\begin{aligned}
& 10 \text { Lux }=10,000 \text { Ohms } \\
& 100 \text { Lux }=1000 \text { Ohms }
\end{aligned}
$$

Use a voltage divider with a 3000 Ohm resistor
10 Lux (Vout $=-10 \mathrm{~V}$)

$$
X=\left(\frac{10000}{3000+10000}\right) 10 \mathrm{~V}=7.6923 \mathrm{~V}
$$

100 Lux (Vout $=+10 \mathrm{~V}$)

$$
X=\left(\frac{1000}{3000+1000}\right) 10 \mathrm{~V}=2.5000 \mathrm{~V}
$$

The gain you need is

$$
\text { gain }=\left(\frac{10 V-(-10 V)}{2.500 V-7.6923 V}\right)=-3.8519
$$

The offset you need makes the voltage in the middle equal to zero

$$
\begin{aligned}
& A=\left(\frac{7.7923+2.500}{2}\right) \\
& A=5.0962 \mathrm{~V}
\end{aligned}
$$

2) Determine a calibration funciton which determines Lux based upon the output voltage for problem \#1

$$
L u x=f(V)
$$

```
Lux = [10:0.1:100]';
R = 100000 ./ Lux;
X = R ./ (3000 + R) * 10;
Y = 3.8519 * ( 5.0962 - X );
plot(Y, Lux);
xlabel('Y (Volts)');
ylabel('Lux');
```

Approximate this with a cubic funciton
$L u x \approx a+b Y+c Y^{2}+d Y^{3}$
$B=[Y . \wedge 0, Y, Y . \wedge 2, Y . \wedge 3] ;$
$A=\operatorname{inv}\left(B^{\prime} * B\right) * B^{\prime} * \operatorname{Lux}$
a $\quad 31.598096$
b $\quad 3.1319854$
c $\quad 0.2167463$
d $\quad 0.0139799$

```
plot(Y, Lux, Y, B*A);
xlabel('Y (Volts)');
ylabel('Lux');
```


Light Level (blue) and cubic approximation (red)

Sidelight: For data which follows a $1 / \mathrm{x}$ relationship, plotting the $\log (\operatorname{Lux})$ works better

$$
\begin{aligned}
& d B=20 \cdot \log _{10}(L u x) \\
& d B(L u x) \approx a+b Y
\end{aligned}
$$

$B=\left[Y .{ }^{\wedge} 0, Y\right] ;$
$A=\operatorname{inv}\left(B^{\prime} * B\right) * B^{\prime} * 20 * \log 10(\operatorname{Lux})$

```
a \(\quad 30.082157\)
b 0.9606058
plot (Y, 20*log10(Lux), Y, B*A);
```


Lus (blue) and it's linear approxiamtion (red)
3) Assume X and Y are related by the following filter

$$
Y=\left(\frac{100}{(s+5)(s+10)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& ((s+5)(s+10)) Y=100 X \\
& \left(s^{2}+15 s+50\right) Y=100 X
\end{aligned}
$$

'sY' means 'the derivative of Y^{\prime}

$$
\frac{d^{2} y}{d t^{2}}+15 \frac{d y}{d t}+50 y=100 x
$$

or using prime notation

$$
y^{\prime \prime}+15 y^{\prime}+50 y=100 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=3+4 \cos (6 t)
$$

Use superposition and phasor analysis
$\mathrm{x}(\mathrm{t})=3$

$$
\begin{aligned}
& X=3 \\
& s=0 \\
& Y=\left(\frac{100}{(s+5)(s+10)}\right) X \\
& Y=\left(\frac{100}{(s+5)(s+10)}\right)_{s=0} \cdot 3 \\
& Y=(2) \cdot 3 \\
& Y=6
\end{aligned}
$$

$$
x(t)=4 \cos (6 t)
$$

$$
X=4+j 0
$$

$$
s=j 6
$$

$$
Y=\left(\frac{100}{(s+5)(s+10)}\right)_{s=j 6} \cdot 4
$$

$$
Y=(0.1688-j 1.0849) \cdot 4
$$

$$
Y=0.6750-j 4.3394
$$

meaning

$$
y=0.6750 \cos (6 t)+4.3394 \sin (6 t)
$$

The total answer is the $\mathrm{DC}+\mathrm{AC}$ part

$$
y(t)=6+0.6750 \cos (6 t)+4.3394 \sin (6 t)
$$

c) Plot the gain vs. frequency of this filter from 0 to $20 \mathrm{rad} / \mathrm{sec}$.

```
w = [0:0.1:20]';
s = j*w;
G = 100 . /( (s+5) .* (s+10) );
plot(w,abs(G))
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


Gain vs. Frequency along with pole location $(-5+\mathrm{j} 0,-10+\mathrm{j} 0)$
4) Use Matlab and fminsearch to find a filter to approximate

$$
G(s)=\left\{\begin{array}{cc}
1 & 0<s<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

Assume $\mathrm{G}(\mathrm{s})$ is in the form of

$$
G(s)=\left(\frac{a c e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)
$$

Plot the gain vs. frequency of your resulting filter along with it's pole locations.
Cost Function (SciLab funciton)

```
function J = cost(z)
// low pass filter
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    j = sqrt(-1);
    w = [0:0.01:10]';
    s = j*w;
    Gideal = 1 * (w < 5);
    G = a*c*e ./ ( (s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e));
    E = abs(Gideal) - abs(G);
    J = sum(E .^ 2);
endfunction
```

Optimal Filter:

SciLab

$$
[e, z]=\text { leastsq(cost, }[1,2,3,4,5])
$$

		a	b	c	d
$\mathbf{z}=$	1.4945112	0.7362332	20.993731	2.1655715	$\mathbf{8 . 6 0 1 1 9 7 4}$
$\mathrm{e}=$	125.20971				

MatLab
$\left.\begin{array}{rlrll}{[\mathrm{z}, \mathrm{e}]} & =\text { fminsearch('cost', }[1,2,3,4,5]) \\ z & = & 1.4945112 & 0.7362332 & 20.993731\end{array}\right) 2.1655715 \quad 8.6011974$

Gain vs. Frequency for a Low-Pass Filter. Pole locations marked with a 'x'

Note that the location of the poles is along an arc centered on the bandwidth of the filter
Also note that

- As you get close to a pole, you get a resonance (the gain goes up)
- As you move away from all 5 poles the gain drops

5) Use Matlab and fminsearch to find a filter to approximate

$$
G(s)=\left\{\begin{array}{cc}
s / 5 & 0<s<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

Assume $\mathrm{G}(\mathrm{s})$ is in the form of

$$
G(s)=\left(\frac{a s}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right)
$$

Plot the gain vs. frequency of your resulting filter along with it's pole locations.

The cost function

```
function J = cost(z)
// low pass filter
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    j = sqrt(-1);
    w = [0:0.01:10]';
    s = j*w;
    Gideal = 0.2*w .* (w < 5);
    G = a*s./ ( (s.^2 + b*s + c) .* (s.^2 + d*s + e));
    plot(w,abs(Gideal), w, abs(G));
    E = abs(Gideal) - abs(G);
    J = sum(E .^ 2);
endfunction
```

Minimizing the cost function (filter design)

```
[e,z] = leastsq(cost,[625,10,25,10,25])
```



```
    e = 251.5432
```


Gain vs. Frequency for a Low-Pass Filter. Pole locations marked with an 'x'

Note that the location of the poles is along an arc centered on the bandwidth of the filter Also note that

- As you get close to a zero, the gain goes to zero ($\mathrm{s}=0$)
- As you get close to a pole, you get a resonance (the gain goes up)
- As you move away from all 5 poles the gain drops

