
ECE 321 - Solution to Homework #3

Calibration and Filters.  Due Monday, April 15th

A light sensor has a lux vs. resistance relationship of

R =
100,000

Lux

1)  Design a circuit which output -10V to +10V as the light level changes from 10 Lux to 100 Lux.

10 Lux = 10,000 Ohms

100 Lux = 1000 Ohms

Use a voltage divider with a 3000 Ohm resistor

10 Lux   (Vout = -10V)

X = 


10000

3000+10000

 10V = 7.6923V

100 Lux  (Vout = +10V)

X = 


1000

3000+1000

 10V = 2.5000V

The gain you need is

gain = 


10V−(−10V)

2.500V−7.6923V


 = −3.8519

The offset you need makes the voltage in the middle equal to zero

A = 


7.7923+2.500

2



A = 5.0962V

+

-

+10V

3k

R

5.0962V

100k 385k

100k 385k

Y
X



2)  Determine a calibration funciton which determines Lux based upon the output voltage for problem #1

Lux = f(V)

Lux = [10:0.1:100]';
R = 100000 ./ Lux;
X = R ./ (3000 + R) * 10;
Y = 3.8519 * ( 5.0962 - X );
plot(Y, Lux);
xlabel('Y (Volts)');
ylabel('Lux');

Approximate this with a cubic funciton

Lux ≈ a + bY + cY2 + dY3

B = [Y.^0, Y, Y.^2, Y.^3];
 
A = inv(B'*B)*B'*Lux

a    31.598096  

b    3.1319854  

c    0.2167463  

d    0.0139799  

plot(Y, Lux, Y, B*A);
xlabel('Y (Volts)');
ylabel('Lux');

Light Level (blue) and cubic approximation (red)

 



Sidelight:  For data which follows a 1/x relationship, plotting the log(Lux) works better

dB = 20 ⋅ log
10

(Lux)

dB(Lux) ≈ a + bY

B = [Y.^0, Y];
A = inv(B'*B)*B'*20*log10(Lux)
 

a    30.082157  

b    0.9606058  

 
plot(Y, 20*log10(Lux), Y, B*A);

 

Lus (blue) and it's linear approxiamtion (red)



3)   Assume X and Y are related by the following filter

Y = 


100

(s+5)(s+10)


X

a)  What is the differential equation relating X and Y?

Cross multiply

((s + 5)(s + 10))Y = 100X

(s2 + 15s + 50)Y = 100X

'sY' means 'the derivative of Y'

d2y

dt2
+ 15

dy

dt
+ 50y = 100x

or using prime notation

y + 15y + 50y = 100x

b)  Determine y(t) assuming

x(t) = 3 + 4 cos(6t)

Use superposition and phasor analysis

x(t) = 3

X = 3

s = 0

Y = 


100

(s+5)(s+10)


X

Y = 


100

(s+5)(s+10)




s=0

⋅ 3

Y = (2) ⋅ 3

Y = 6

x(t) = 4 cos(6t)

X = 4 + j0

s = j6

Y = 


100

(s+5)(s+10)




s=j6

⋅ 4

Y = (0.1688 − j1.0849) ⋅ 4

Y = 0.6750 − j4.3394



meaning

y = 0.6750 cos(6t) + 4.3394 sin(6t)

The total answer is the DC + AC part

y(t) = 6 + 0.6750 cos(6t) + 4.3394 sin(6t)

c)  Plot the gain vs. frequency of this filter from 0 to 20 rad/sec.

w = [0:0.1:20]';
s = j*w;
 
G = 100 . /( (s+5) .* (s+10) );
 
plot(w,abs(G))
xlabel('Frequency (rad/sec)');
ylabel('Gain');
 

Gain vs. Frequency along with pole location (-5 + j0,  -10 + j0)



4)  Use Matlab and fminsearch to find a filter to approximate

G(s) =





1 0 < s < 5

0 otherwise

Assume G(s) is in the form of

G(s) =





ace

(s+a)s
2+bs+c


s

2+ds+e






Plot the gain vs. frequency of your resulting filter along with it's pole locations.

Cost Function  (SciLab funciton)

function J = cost(z)
// low pass filter

   a = z(1);
   b = z(2);
   c = z(3);
   d = z(4);
   e = z(5);
   
   j = sqrt(-1);
   w = [0:0.01:10]';
   s = j*w;
   
   Gideal = 1 * (w < 5);
   G = a*c*e ./ ( (s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e));
   
   E = abs(Gideal) - abs(G);
   
   J = sum(E .^ 2);
   
endfunction

Optimal Filter:

SciLab

[e,z] = leastsq(cost,[1,2,3,4,5])

             a           b             c            d            e

 z  =    1.4945112    0.7362332    20.993731    2.1655715    8.6011974  

 e  =    125.20971  

MatLab

[z,e] = fminsearch('cost',[1,2,3,4,5])

 z  =    1.4945112    0.7362332    20.993731    2.1655715    8.6011974  

 e  =    125.20971  



Gain vs. Frequency for a Low-Pass Filter.  Pole locations marked with a 'x'

Note that the location of the poles is along an arc centered on the bandwidth of the filter

Also note that

As you get close to a pole, you get a resonance (the gain goes up)

As you move away from all 5 poles the gain drops



5)  Use Matlab and fminsearch to find a filter to approximate

G(s) =





s/5 0 < s < 5

0 otherwise

Assume G(s) is in the form of

G(s) =





as


s

2+bs+c

s

2+ds+e






Plot the gain vs. frequency of your resulting filter along with it's pole locations.

 The cost function

function J = cost(z)
// low pass filter

   a = z(1);
   b = z(2);
   c = z(3);
   d = z(4);
   e = z(5);
   
   j = sqrt(-1);
   w = [0:0.01:10]';
   s = j*w;
   
   Gideal = 0.2*w .* (w < 5);
   G = a*s ./ ( (s.^2 + b*s + c) .* (s.^2 + d*s + e));
   
   plot(w,abs(Gideal), w, abs(G));
   E = abs(Gideal) - abs(G);
   
   J = sum(E .^ 2);
   
endfunction

Minimizing the cost function (filter design)

[e,z] = leastsq(cost,[625,10,25,10,25])

             a            b            c             d           e
 z  =    12.640092    0.9824992    19.679872    1.6015253    6.1387986  

 e  =    251.5432  



Gain vs. Frequency for a Low-Pass Filter.  Pole locations marked with an 'x'

Note that the location of the poles is along an arc centered on the bandwidth of the filter

Also note that

As you get close to a zero, the gain goes to zero (s = 0)

As you get close to a pole, you get a resonance (the gain goes up)

As you move away from all 5 poles the gain drops


