ECE 321 - Final - Name

Spring 2020. Due Wednesday, May 13th at midnight
alculators, internet, Matlab, circuit lab, tarot cards permitted. Just not someone else.
Please sign pledge if able (i.e. you did not work with anyone else)
No aid given, received, or observer:
Background: With a microprocessor, it is fairly easy to generate a square wave. Using an H -bridge, you can then drive a speaker (ECE 320 problem). This results in a harsh sounding electronic piano due to the harmonics of a square wave.

One way to produce a cleaner sounding electronic piano is to

- Amplify the resulting sine wave to -10 V to +10 V ,
- Filter the square wave to remove the harmonics (leaving a clean sine wave), and then
- Drive a speaker using a power amplifier (push-pull amplifier).

This final exam goes through each part of this design.

Problem 1) Amplifier: Design a circuit to convert a $0 \mathrm{~V} / 5 \mathrm{~V}$ square wave into a $-10 \mathrm{~V} /+10 \mathrm{~V}$ square wave Input (X): 220 Hz to 440 Hz square wave

- $0 \mathrm{~V} / 5 \mathrm{~V}$
- Capable of driving 10 mA

Output (Y): 220 Hz to 440 Hz square wave

- -10 V to +10 V
- Capable of driving 10 mA

Relationship:

- $\mathrm{Y}=4 \mathrm{X}-10$

Rewrite this as

$$
Y=4(X-2.5)
$$

Implement with an instrumentation amplifier

$$
Y=\left(\frac{R_{1}}{R_{2}}\right)(A-B)
$$

Problem 2) Filter. A square wave has odd harmonics. A sine wave has no harmonics. One way to turn a square wave into a sine wave is to filter out the harmonics.

Design a filter to meet the following requirements
Input (X): 220 Hz to 440 Hz square wave (i.e. problem \#1)

- -10 V to +10 V
- Capable of driving up to 10 mA

Output (Y): 220 Hz to 440 Hz sine wave

- Capable of driving up to 10 mA

Relationship:

- $0.9<$ gain $<1.10<$ frequency $<440 \mathrm{~Hz}$
- $0.1<$ gain frequency $>660 \mathrm{~Hz}$

The number of poles you need are

$$
\left(\frac{440}{660}\right)^{n}<0.1
$$

$$
n>5.68
$$

Let $\mathrm{N}=6$
Assume a Chebuchev filter. For a corner at $1 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{-}{\left(s+0.4722 \angle \pm 36.10^{0}\right)\left(s+0.8100 \angle \pm 69.83^{0}\right)\left(s+1.0436 \angle \pm 84.38^{0}\right)}\right)
$$

For a corner at 440 Hz ($2764 \mathrm{rad} / \mathrm{sec}$)

$$
G(s)=\left(\frac{-}{\left(s+1305 \angle \pm 36.10^{0}\right)\left(s+2239 \angle \pm 69.83^{0}\right)\left(s+2885 \angle \pm 84.38^{0}\right)}\right)
$$

Design this in three stages

Stage 1:

$$
\begin{aligned}
& G(s)=\left(\frac{k \cdot 1305^{2}}{\left(s+1305 \angle \pm 36.10^{0}\right)}\right) \\
& \left(\frac{1}{R C}\right)=1305 \\
& \mathrm{R}=100 \mathrm{k}, \\
& 3-k=2 \cos \left(36.10^{0}\right) \\
& k=1.384 \\
& \mathrm{R} 1=100 \mathrm{k}, \quad \mathrm{C}=7.66 \mathrm{nF} \\
& 3
\end{aligned}
$$

Stage 2:

$$
G(s)=\left(\frac{k \cdot 2239^{2}}{\left(s+2239 \angle \pm 69.83^{0}\right)}\right)
$$

$$
\left(\frac{1}{R C}\right)=2239
$$

$$
\begin{aligned}
& \mathrm{R}=100 \mathrm{k}, \quad \mathrm{C}=4.466 \mathrm{nF} \\
& 3-k=2 \cos \left(69.83^{0}\right) \\
& k=2.310 \\
& \mathrm{R} 1=100 \mathrm{k}, \quad \mathrm{R} 2=131.0 \mathrm{k}
\end{aligned}
$$

Stage 3:

$$
\begin{aligned}
& G(s)=\left(\frac{k \cdot 2885^{2}}{\left(s+2885 \angle \pm 84.38^{0}\right)}\right) \\
& \left(\frac{1}{R C}\right)=2885
\end{aligned}
$$

$$
\mathrm{R}=100 \mathrm{k}, \quad \mathrm{C}=3.466 \mathrm{nF}
$$

$$
3-k=2 \cos \left(84.38^{\circ}\right)
$$

$$
k=2.804
$$

$$
\mathrm{R} 1=100 \mathrm{k},
$$

$$
\mathrm{R} 2=180.4 \mathrm{k}
$$

Checking this design in Matlab

```
p1 = 1305 * exp(j*36.1*pi/180);
p2 = conj(p1);
p3 = 2239*exp(j*69.83*pi/180);
p4 = conj(p3);
p5 = 2885*exp(j*84.38*pi/180);
p6 = conj(p5);
num = p1 * p2 * p3 * p4 * p5 * p6
num = abs(num)
num = 7.1059e+019
f = [0:1000]';
w = 2*pi*f;
s = j*w;
G = num./ ( (s+p1).* (s+p2)..* (s+p3).* (s+p4).* (s+p5).* (s+p6) );
plot(f,abs(G))
plot(f,abs(G),'b',[0,440],[0.9,0.9],'r')
plot(f,abs(G),'b',[0,440],[0.9,0.9],'r',[660,1000],[0.1,0.1],'r')
```


Problem 3) Power Amplifier. Design a circuit to take the output of the filter and drive an 8-Ohm speaker Input (X) (problem \#2)

- -10 V to +10 V sine wave
- 220 Hz to 440 Hz
- Capable of driving 10 mA

Output (Y): 8-Ohm speaker
Relationship:

- $\mathrm{Y}=\mathrm{X}$
- +/-100mV

This is just a push-pull amplifier

Problem 4) CircuitLab Simulation.
Verify your design using CircuitLab.

- Adjust the gain of the amplifier (problem \#1) so that the output is a +10 V to -10 V sine wave
- Verify the output of the resulting amplifier (problem 1) at 220 Hz and 440 Hz
- Verify the output of the filter (problem 2) at 220 Hz and 440 Hz
- Verify the output of push-pull amplifier (problem \#3) at 220 Hz and 440 Hz

The low-pass filter has a DC gain of

$$
\begin{aligned}
& k=k_{1} k_{2} k_{3}=1.384 \cdot 2.310 \cdot 2.804 \\
& k=8.965
\end{aligned}
$$

We only want a gain of 4.000 , so change the instrumentation amplifier to have a gain of

$$
\text { gain }=\left(\frac{4}{8.965}\right)=0.4462
$$

Part 1 of circuit

This hit the 30 component limit on my personal account - so I'll have to simulate it in two sections

Section 2:
Replace stage 1 with its Thevenin equivalent

- Rth $=100 \mathrm{k}$
- Vth $=0.4462$ Vin

Gain vs. Frequency: The gain at 440 Hz is down a little...

Response to a 220 Hz squre wave input

Response to a 440 Hz squar wave input

