## ECE 321-Quiz \#2 - Name

Instrumentation Amplifiers, Calibration, Strain Sensors, Filters, Due midnight, April 23, 2020
Calculators, internet, Matlab permitted.
Please sign pledge if able (i.e. you did not work with anyone else)
No aid given, received, or observer:

1) Instrumentation Amplifier: A strain gage has the temperature - resistance relationship of

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C . Design a circuit so that the output is

- -10 V at -10 C
- +10 V at +10 C
- Proportional for $-10 \mathrm{C}<\mathrm{T}<+10 \mathrm{C}$

Let the resistor be 3000 Ohms
At -10C

- $\mathrm{R}=5719.5 \mathrm{Ohms}$
- $X=\left(\frac{R}{R+3000}\right) 10 \mathrm{~V}=6.5594 \mathrm{~V}$
- $\mathrm{Y}=-10 \mathrm{~V}$

At +10 C

- $\mathrm{R}=2002.82 \mathrm{Ohms}$
- $X=\left(\frac{R}{R+3000}\right) 10 \mathrm{~V}=4.0034 \mathrm{~V}$
- $\mathrm{Y}=+10 \mathrm{~V}$

Y goes up as X goes down. Connect X to the minus input

The gain required is

$$
\text { gain }=\left(\frac{10 V-(-10 V)}{4.0034 V-6.5594 V}\right)=-7.8246
$$

Pick the resistor ration to be $7.8246: 1$

The offset sets the output to 0 V half way between -10 V and +10 V (half way between 6.5594 V and 4.0034 V )

$$
\text { offset }=\left(\frac{6.5594+4.0034}{2}\right)=5.2814 \mathrm{~V}
$$


2) Calibration. For your circuit of problem \#1, determine a calibration funtion of the form

$$
T=a V^{2}+b V+c
$$

where C is the temperature in degrees C over the range of -10 C to +10 C . Also determine the maximum error of your calibration scheme

| a | b | c | mean error <br> $\operatorname{mean}\left(\mathrm{T}-\mathrm{B}^{*} \mathrm{~A}\right)$ | standard deviation <br> $\operatorname{std}\left(\mathrm{T}-\mathrm{B}^{*} \mathrm{~A}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.0022 | 0.9910 | -0.2167 | 0 | 0.0354 |

$\mathrm{T}=[-10: 0.1: 10]$ ';
$R=1000 * \exp (3905 . /(T+273)-3905 / 298) ;$
$\mathrm{X}=\mathrm{R} . /(\mathrm{R}+3000)$ * 10;
$Y=7.8246 *(5.2814-X)$;
$B=[Y . \wedge 2, Y, Y . \wedge 0] ;$
$A=\operatorname{inv}\left(B^{\prime} * B\right) * B^{\prime} * T$
0.0022
0.9910
$-0.2167$
plot(Y,T,'b', Y, B*A, 'r')
xlim([-10,10])
xlabel('Temperature (C)');
ylabel('Volts');
$x=\operatorname{mean}(T-B * A)$
$x=-7.9980 e-016$
$s=\operatorname{std}(T-B * A)$
$s=0.0354$

3) Strain Sensor: A metal beam deflects by 20 mm when a force of 100 N is applied to it. Determine the radius of curvature, the strain, and the resistance of a strain gage placed on the ourside edge

- Length of beam: 380mm
- Thickness of beam: 3mm
- Deflection: 20 mm
- $R=120(1+2.14 \varepsilon)$

| Radius of Curvature | Strain on Outside Edge | Resistance of Strain Gage |
| :---: | :---: | :---: |
| $\mathbf{9 1 2 . 5 m m}$ | $\mathbf{0 . 0 0 1 6 4}$ | $\mathbf{1 2 0 . 4 2 2}$ Ohms |



To determine the radius

$$
\begin{aligned}
& R^{2}=(R-20)^{2}+190^{2} \\
& R=912.5 \mathrm{~mm}
\end{aligned}
$$

That's the radius to the center line. The radius to the outside edge is $1 / 2$ of the thickness more

$$
R_{\text {outside }}=912.5 \mathrm{~mm}+\frac{1}{2}(3 \mathrm{~mm})=914 \mathrm{~mm}
$$

The strain on the outside edge is

$$
\varepsilon=\left(\frac{914 m m-912.5 \mathrm{~mm}}{912.5 \mathrm{~mm}}\right)=+0.00164
$$

The resistance is then

$$
R=120(1+2.14 \varepsilon)=120.422 \Omega
$$

4) Filter Analysis: Assume $X$ and $Y$ are related by the following transfer function

$$
Y=\left(\frac{5000}{(s+10)(s+15)(s+20)}\right) X
$$

4a) What is the differential equation relating $X$ and $Y$ ?
Multiply out

$$
\begin{aligned}
& \left(s^{3}+45 s^{2}+650 s+3000\right) Y=5000 X \\
& \frac{d^{3} y}{d t^{3}}+45 \frac{d^{2} y}{d t^{2}}+650 \frac{d y}{d t}+3000 y=5000 x
\end{aligned}
$$

4b) Determine $y(t)$ assuming

$$
x(t)=5+6 \sin (7 t)
$$

Use superposition

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=5 \\
& \mathrm{~s}=0 \\
& \mathrm{X}=5+\mathrm{j} 0 \\
& Y=\left(\frac{5000}{(s+10)(s+15)(s+20)}\right)_{s=0}(5+j 0) \\
& Y=8.3333 \\
& y(t)=8.3333
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}(\mathrm{t})= & 6 \sin (7 \mathrm{t}) \\
& \mathrm{s}=\mathrm{j} 7 \\
\mathrm{X} & =0-\mathrm{j} 6 \\
& Y=\left(\frac{5000}{(s+10)(s+15)(s+20)}\right)_{s=j 7}(0-j 6) \\
& Y=-6.885-j 1.301 \\
& y(t)=-6.885 \cos (7 t)+1.301 \sin (7 t)
\end{aligned}
$$

The total answer is then

$$
y(t)=8.333-6.885 \cos (7 t)+1.301 \sin (7 t)
$$

5) Filter Design using fminsearch: Design a filter of the form

$$
Y=G(s) X=\left(\frac{a}{(s+b)\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right) X
$$

to approximate

$$
|G(j w)|=\left\{\begin{array}{cc}
0.6 & 0<w<3 \\
1.0 & 3<w<6 \\
0 & 6<w<10
\end{array}\right.
$$

over the rainge of $0<w<10$. Give

- The resulting filter, $G(s)$, and
- The resulting gain vs. frequency of $\mathrm{G}(\mathrm{s})$


It helps if you give is an inital guess which is close. Place the poles at

- $\mathrm{s}=-1$
- $s=-1+\mathrm{j} 3$ passes DC
passes $3 \mathrm{rad} / \mathrm{sec}$
passes $6 \mathrm{rad} / \mathrm{sec}$
- $\mathrm{s}=-1+\mathrm{j} 6$
pas 6
- DC gain is 1.0

Let Matlab iterate to improve the filter

$$
\begin{aligned}
& \quad G(s)=\left(\frac{370}{(s+1)\left(s^{2}+2 s+10\right)\left(s^{2}+2 s+37\right)}\right) \\
& \gg \\
& z=42, \mathrm{e}]=\text { fminsearch ('costF',[370,1,1,10,1,37])} \\
& \mathrm{z}=428.2408 \quad 1.5093 \quad 1.5600 \\
& \mathrm{e}=14.6579
\end{aligned} 0.6997 \quad 30.6578
$$

This results in

$$
G(s)=\left(\frac{428.24}{(s+1.5093)\left(s^{2}+1.56 s+14.65\right)\left(s^{2}+0.6997 s+30.6578\right)}\right)
$$


6) Filter Implementation: Design an op-amp circuit to implement the following filter:

$$
Y=\left(\frac{450}{\left(s^{2}+4 s+15\right)\left(s^{2}+2 s+30\right)}\right) X
$$

| C 1 | R 1 | C 2 | R 2 | Resulting DC gain |
| :---: | :---: | :---: | :---: | ---: |
| 2.582 uF | $\mathbf{9 6 . 7 k}$ | 1.857 uF | 163.4 k | 5.18 |



$$
\begin{aligned}
& \text { Roots of } s^{2}+4 s+15 \\
& \qquad \begin{array}{l}
s=-2 \pm j 3.3166 \\
s=-3.8730 \angle \pm 58.91^{0} \\
\left(\frac{1}{100 k C_{1}}\right)=3.8730 \\
C_{1}=2.582 \mu F \\
3-k=2 \cos \left(58.91^{0}\right) \\
k=1.967 \\
R_{1}=(k-1) 100 k \\
R_{1}=96.7 k
\end{array}
\end{aligned}
$$

Resulting DC gain

$$
\text { gain }=(1.967)(2.6345)=5.183
$$

