ECE 321-Quiz \#3 - Name

Filter Design, Butterworth \& Chebychev Filters, Analog Computers. Due midnight, April 30, 2020
Calculators, internet, Matlab, circuit lab, tarot cards permitted. Just not someone else. Please sign pledge if able (i.e. you did not work with anyone else)

No aid given, received, or observer:

1) Filter Design: Design a filter to meet the following requirements. (Only the transfer function is needed - you don't need to design the op-amp circuit. That will come with problems 3-6)

$$
\begin{array}{ll}
0.9<\text { gain }<1.1 & \text { w }<100 \mathrm{~Hz} \\
\text { gain }<0.1 & \text { w }>400 \mathrm{~Hz}
\end{array}
$$

Filter: G(s)	Gain at 100 Hz	Gain at 400 Hz
$G(s)=\left(\frac{533 \cdot 761^{2}}{(s+533)\left(s+761 \angle \pm 69.50^{\circ}\right)}\right)$	$\mathbf{0 . 9 8 0 0}$	$\mathbf{0 . 0 2 0 4}$

$$
\begin{aligned}
& \left(\frac{100}{400}\right)^{n}<0.1 \\
& n>1.66
\end{aligned}
$$

Let $\mathrm{n}=3$ since a 3rd-order Chebychev is almost as easy to build as a 2 nd-order one
Choose a Chebychev filter (a Butterworth could also work)
Choose the corner to be $100 \mathrm{~Hz}(628 \mathrm{rad} / \mathrm{sec})$ (a guess). For a corner at $1 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{k}{(s+0.8494)\left(s+1.2130 \angle \pm 69.50^{0}\right)}\right)
$$

For a corner at $100 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{533.761^{2}}{(s+533)\left(s+761 \angle \pm 69.50^{0}\right)}\right)
$$

Checking at 100 Hz and 400 Hz

```
p1 = 533;
p2 = 761 * exp(j*69.5*pi/180);
p3 = conj(p2);
num = p1*p2*p3
num = 308671493
f = [100;400]
w = 2*pi*f;
s = j*W;
G = num ./ ( (s+p1).*(s+p2).* (s+p3) );
abs(G)
    0.9800
    0.0204
```

2) Filter Design: Design a filter to meet the following requirements. (Only the transfer function is needed - you don't need to design the op-amp circuit. That will come with problems 3-6)

$$
\begin{array}{ll}
0.9<\text { gain }<1.1 & w<100 \mathrm{~Hz} \\
\text { gain }<0.1 & w>130 \mathrm{~Hz}
\end{array}
$$

Filter: G(s)	
$G(s)=G(s)=\left(\frac{k}{(s+163.1)\left(s+269.3 \angle \pm 55.36^{0}\right)\left(s+435.4 \angle \pm 73.32^{0}\right)\left(s+567.8 \angle \pm 81.74^{0}\right)\left(s+639.6 \angle \pm 87.46^{0}\right)}\right)$	
Gain at 100 Hz	Gain at 130 Hz
$\mathbf{0 . 9 7 3 5}$	$\mathbf{0 . 0 1}$

$$
\left(\frac{100}{130}\right)^{n}<0.1
$$

$$
n>8.77
$$

Let $\mathrm{n}=9$. For a corner at $1 \mathrm{rad} / \mathrm{sec}$
$G(s)=\left(\frac{k}{(s+0.25977)\left(s+0.4298 \angle \pm 55.36^{0}\right)\left(s+0.6933 \angle \pm 73.32^{0}\right)\left(s+0.9041 \angle \pm 81.74^{0}\right)\left(s+1.0185 \angle \pm 87.46^{0}\right)}\right)$
For a corner at $628 \mathrm{rad} / \mathrm{sec}$
$G(s)=\left(\frac{k}{(s+163.1)\left(s+269.3 \angle \pm 55.36^{0}\right)\left(s+435.4 \angle \pm 73.32^{0}\right)\left(s+567.8 \angle \pm 81.74^{0}\right)\left(s+639.6 \angle \pm 87.46^{0}\right)}\right)$
Checking:

```
p1 = 161.3;
p2 = 269.3*exp(j*55.36*pi/180);
p3 = conj(p2);
p4 = 435.4*exp(j*73.72*pi/180);
p5 = conj(p4);
p6 = 567.8*exp(j*81.74*pi/180);
p7 = conj(p6);
p8 = 639.6*exp(j*87.46*pi/180);
p9 = conj(p8);
f = [100, 130];
s = j * 2 * pi * f;
num = p1*p2*p3*p4*p5*p6*p7*p8*p9;
G = num ./ (
(s+p1).* (s+p2).* (s+p}3).*(s+p4) .* (s+p5) . * (s+p6) .* (s+p7) .* (s+p8) .* (s+p9))
abs(G)
ans = 0.9735 0.0109
>>
```

3) Filter Implementation: Design an op-amp circuit to implement the following filter:

$$
Y=\left(\frac{100}{(s+2)(s+5)(s+10)}\right) X
$$

There are several answers. This is one of them

4) Filter Implementation: Design a circuit to implement the following Butterworth filter:

$$
Y=\left(\frac{k}{\left(s+30 \angle \pm 22.5^{\circ}\right)\left(s+30 \angle \pm 67.5^{0}\right)}\right) X
$$

C 1	R 1	C 2	R 2	Resulting DC gain
333 nF	$\mathbf{1 5 . 2 k}$	333 nF	123.5 k	2.575

$\left(\frac{1}{R C_{1}}\right)=30$
$\left(\frac{1}{R C_{2}}\right)=30$
$C_{1}=333 n F$
$C_{2}=333 n F$
$3-k=2 \cos \left(22.5^{0}\right)$
$3-k=2 \cos \left(67.5^{\circ}\right)$
$k=1.152$
$k=2.235$
$k=1+\frac{R_{1}}{100 k}$
$R_{2}=123.5 k$
$R_{1}=15.2 k$

Resulting DC gain

$$
D C=k_{1} k_{2}=1.152 \cdot 2.235=2.575
$$

5) Filter Implementation: Design a circuit to implement the following Chebychev filter:

$$
Y=\left(\frac{k}{\left(s+20 \angle \pm 38.5^{0}\right)\left(s+33.3 \angle \pm 77.8^{0}\right)}\right) X
$$

C 1	R1	C2	R2	Resulting DC gain
500 nF	$\mathbf{4 3 . 5 k}$	300 nF	$\mathbf{1 5 7 . 7 k}$	3.698

$\left(\frac{1}{R C_{1}}\right)=20$
$C_{1}=500 n F$
$3-k=2 \cos \left(38.5^{0}\right)$
$k=1.435$
$R_{1}=43.5 k$
$3-k=2 \cos \left(77.8^{0}\right)$
$k=2.577$
$\left(\frac{1}{R C_{2}}\right)=33.3$
$C_{2}=300 n F$
$R_{2}=157.7 k$

Resulting DC gain $=1.435 * 2.577=3.698$
6) Design an analog computer to implement

$$
Y=\left(\frac{3 s+50}{(s+2)(s+4)(s+6)}\right) X=\left(\frac{3 s+50}{s^{3}+12 s+44 s+48}\right) X
$$

