ECE 321-Quiz \#4 - Name

Transistor Amplifiers. Due midnight, May 8th, 2020
Calculators, internet, Matlab, circuit lab, tarot cards permitted. Just not someone else.

1) Determine Vb, Rb, and the $\mathrm{Q}-$ point for the following transistor circuit. Assume

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=200$

Vb	Rb	Vce	Ic
4.00 V	133.33 k	3.36 V	1.23 mA

$V_{b}=\left(\frac{200 k}{200 k+400 k}\right) 12 \mathrm{~V}=4.00 \mathrm{~V}$
$R_{b}=200 k| | 400 k=133.33 k$
$I_{b}=\left(\frac{4.00 V-0.7 V}{133.33 k+(1+200) 2 k}\right)=6.16 \mu A$
$I_{c}=200 I_{b}=1.23 \mathrm{~mA}$
$V_{c e}=12-5 k \cdot I_{c}-2 k\left(I_{c}+I_{b}\right)=3.36 \mathrm{~V}$
2) Determine R1 and R2 so that the following circuit

- Has a Q-point which is stabilized for variations in β, and
- $\mathrm{Vce}=6.0 \mathrm{~V}$

R1	R2	Vb	Rb
$\mathbf{1 8 5 . 2 k}$	51.02 k	$\mathbf{2 . 5 9 2 V}$	$\mathbf{4 0 k}$

$R_{b} \ll(1+\beta) R_{e}=403 k$
Let $\mathrm{Rb}=40 \mathrm{k}$
$12 V=5 k \cdot I_{c}+V_{c e}+2 k\left(I_{c}+I_{b}\right)$
$I_{c}=855.9 \mu \mathrm{~A}$
$I_{b}=\frac{I_{c}}{200}=4.280 \mu \mathrm{~A}$
$V_{b}=R_{b} I_{b}+0.7+R_{e}\left(I_{b}+I_{c}\right)=2.592 \mathrm{~V}$
$\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=40 k$
$\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=2.5292 \mathrm{~V}$
3) Draw the small signal model for the following circuit. Assume $\mathrm{rf}=3000 \mathrm{Ohms}$

4) Find the 2-port model for the following circuit

Rin	Ai	Rout	Ao
11.65 k	0	$4 k$	-1.985

Rin: Apply 1V to the input. Compute the current

$$
\begin{aligned}
& R_{\text {in }}=20 k\|30 k\| 1 k+(1+200)(2 k) \\
& R_{\text {in }}=11.65 k \Omega
\end{aligned}
$$

Rout: Set Vin $=0$. That sets $\mathrm{Ib}=0$ and all you see at the output is 4 k
Rout $=4 \mathrm{k}$
Aout: Apply 1V at the input. Ib is then

$$
\begin{aligned}
& I_{b}=\left(\frac{1 V}{1 k+(1+200) 2 k}\right)=2.481 \mu \mathrm{~A} \\
& I_{c}=200 I_{b}=496.3 \mu \mathrm{~A} \\
& V_{\text {out }}=-4000 I_{c}=-1.985
\end{aligned}
$$

5) Determine the 2-port parameters for the following circuit using CircuitLab

Rin	Ai	Rout	Ao
1768	0.7460	4.32	0.958

Start in CircuitLab:

Ao: $\mathrm{R} 8=0, \mathrm{R} 5=10 \mathrm{M}$ The gain in the plateau is what we want (when C is neglibable): $\mathrm{Ao}=0.958$

Rout: $\mathrm{R} 8=0, \mathrm{R} 5=10$. Measure the gain

$$
\begin{aligned}
& \text { gain }=0.669=\left(\frac{10}{10+R_{\text {out }}}\right) 0.958 \\
& R_{\text {out }}=\left(\frac{0.958-0.669}{0.669}\right) 10=4.32 \Omega
\end{aligned}
$$

Ri: $\mathrm{R} 8=1000, \mathrm{R} 5=10 \mathrm{M}$. Measure the gain

$$
\text { gain }=0.612=\left(\frac{R_{i n}}{R_{i n}+1000}\right) 0.958
$$

$$
R_{\text {in }}=\left(\frac{0.612}{0.958-0.612}\right) 1000=1768
$$

Ai: Apply a source to Vout. $\mathrm{Ai}=0.7460$

