## ECE 321 - Homework \#1

Op Amp Amplifiers, Push-Pull Amplifiers. Due Monday, April 6th
Please make the subject "ECE $321 \mathrm{HW} \# 1$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

For all problems, assume you are using
LM833 Op Amps (max current $=50 \mathrm{~mA})$
TIP112 and TIP117 transistors

- $\beta=1000$
- $\mid$ Vbe $\mathrm{I}=1.4 \mathrm{~V}$ (Darlington pair)


## Voltage Amplfier:

Design a circuit which mixes and amplifies two cell phones cell phone to -10 V to +10 V (analog), capable of driving an 8 Ohm speaker at 12.5 Watts.

Problem 1) Design an amplifier which mixes and amplifiers audio signal from two cell phones:
Input ( Va amd Vb ): Two cell phones

- 1 Vpp AC signal
- $20-20 \mathrm{kHz}$
- Capable of driving 1mA @ 1Vpp meaning keep the input resistors larger than $1 k$

Output: 1 k resistor (worst case: $10 \mathrm{~mA} @ 10 \mathrm{~V}$ ) meaning an op-amp can drive the load directly
Relationship

$$
V_{1}=7 V_{a}+3 V_{b}
$$

Let $\mathrm{R}=21 \mathrm{k}$ (arbitrary)


Problem 2) Design push-pull amplifier to connect the output of problem \#1 to an 8-Ohm speaker:
Input: V1

- 10 Vpp AC signal
- $20-20 \mathrm{kHz}$
- Capable of driving 10mA @ 1Vpp

Output: V2

- 8 Ohm speaker

Relationship:

$$
V_{2}=V_{1} \quad \text { i.e. no crossover distortion }
$$



Problem \#3: Simulate problem \#1 and \#2 in CircuitLab and verify that

- $\mathrm{V} 2=7 \mathrm{Va}$
$($ set $\mathrm{Vb}=0)$
- $\mathrm{V} 2=3 \mathrm{Vb} \quad(\operatorname{set} \mathrm{Va}=0)$
- $\mathrm{V} 2=7 \mathrm{Va}+3 \mathrm{Vb}$ ( both Va and Vb are on $)$




## Current Amplfier:

Problem \#4) Design a push-pull amplifier to take the output of probem \#1 and drive an LED where the current is proportional to the voltage at V1

Input: V1

- 10 Vpp AC signal
- $20-20 \mathrm{kHz}$
- Capable of driving 10mA @ 1Vpp

Output:

- Red LED (V1 > 0)
- Blue LED ( $\mathrm{V} 1<0$ )

Relationship:

- The current through the LED is

$$
I_{d}=100 V_{1} \mathrm{~mA}
$$



Problem \#5: Simulate problem \#1 and \#4 in CircuitLab and verify that

- $\quad \mathrm{Id}=700 \mathrm{Va}(\mathrm{mA})$
$($ set $\mathrm{Vb}=0)$
- $\quad \mathrm{Id}=300 \mathrm{Vb}(\mathrm{mA})$
$($ set $\mathrm{Va}=0)$
( both Va and Vb are on )



