ECE 321 - Homework \#2

Tmperature and Strain Sensors. Due Wednesday, April 15th
Please make the subject "ECE $321 \mathrm{HW} \# 2$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Temperature Sensors

1) Assume you are using a thermistor where the temperature - resistance relationship is

$$
R=1000 \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees Kelvin.

1) Design a linearizing circuit so that the resistance is approximately linear from 0 C to +30 C . Plot the resulting resitance vs. temperature relationship.
Using Matlab setting $\mathrm{Ra}=\mathrm{Rb}$
```
function [ J ] = costR( Z )
    a = Z(1);
    b = Z(2);
    R0 = 1000 * exp(3905/273-3905/298);
    R15 = 1000 * exp(3905/288-3905/298);
    R30 = 1000 * exp(3905/303 - 3905/298);
    Z0 = (R0 + a)*b / (R0 + a + b);
    Z15 = (R15 + a)*b / (R15 + a + b);
    Z30 = (R30 + a)*b / (R30 + a + b);
    e1 = Z0 + Z30 - 2*Z15;
    e2 = a - b;
    J = e1^2 + e2^2;
    end
[Z,e] = fminsearch('costR',[1000,1000])
Z = 592.6961 592.6961
```


Checking in Matlab

```
T = [0:0.1:30]';
R = 1000 * exp(3905 ./ (T+273) - 3905/298);
a = Z(1);
Ra = Z(1);
Rb = Z(2);
```

$Z=(R+R a) * R b$./ ($\mathrm{R}+\mathrm{Ra}+\mathrm{Rb})$; plot(T, Z)
xlabel('Temperature (C)');
ylabel('Ohms');

2) Using the linearizing circuit from part 1 , design a circuit which outputs

- -10 V at 0 C
- +10 V at +30 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.

Use a voltage divider. For the top resistor, pick it close to the average of Z

```
>> mean(Z)
ans=465.5036
```

Assume a 500 Ohm resistor. Then, the voltages at 0C and 30C are

```
V0 = Z(1) / (Z(1) + 500) * 10
V0=5.0726
V30 = Z(301) / ( Z(301) + 500 ) * 10
V30 = 4.5430
```

The gain you need is

```
gain = 20 / (V30 - V0)
gain = -37.7656
```

The offset voltage is

```
offset = (V30 + V0)/2
offset = 4.8078
```


Plotting the resulting voltage vs. temperature

```
Vx = Z ./ (500 + Z) * 10;
Y = abs(gain) * (offset - Vx);
plot(T,Y)
xlabel('Temperature (C)');
ylabel('Voltage');
grid
```

Note that this is still slightly nonlinear (it should pass through 0 V at 15C). This is due to the nonlienarity of the voltage divider. If you optimize the circuit with the voltage divider taken into account, you could get it to pass through ($15 \mathrm{C}, 0 \mathrm{~V}$)

Audio Sensors and Envelope Detectors:

3) Design a circuit which conerts a $1 \mathrm{Vpp}, 20-20 \mathrm{kHz}$ audio signal to a DC signal

Input: Cell Phone

- 1 Vpp capable of driving 1 mA
- $20-20 \mathrm{kHz}$

Output: 0-10VDC capable of driving 1 kOhms (i.e. 10mA @ 10V)
Relationship:

- 1Vpp input produces 10VDC output
- Ripple $=0.5 \mathrm{Vpp} @ 1 \mathrm{kHz}$

To convert 0.5 Vp to 10 Vp , you need a gain of 20 x .
Add an envelope detetor. For the ripple to be $0.5 \mathrm{~V} @ 1 \mathrm{kHz}$

$$
V=V_{0} \exp \left(\frac{-t}{R C}\right)
$$

Assume $\mathrm{C}=1 \mathrm{uF}$

$$
\begin{aligned}
& 9.5 \mathrm{~V}=10 \mathrm{~V} \cdot \exp \left(\frac{-0.001}{R \cdot 1 \mu F}\right) \\
& R=19.5 \mathrm{k} \Omega
\end{aligned}
$$

4) Check your design in CircuitLab using a $0.5 \mathrm{Vp}, 1 \mathrm{kHz}$ sine wave for the input.

Strain Sensors

5) Assume a metal beam deflects 5 mm when 2001 b is placed on the beam. Design a circuit which outouts

- 0 V at 0 lb
- 10 V at 2001 b

Assume

- Length of beam $=5 \mathrm{~cm}$
- Thickness of beam $=0.5 \mathrm{~mm}$
- Strain Gage relationship is

$$
R=120(1+2.14 \varepsilon) \Omega
$$

The radius of the circle the beam traces out is

$$
\begin{aligned}
& R^{2}=(R-5)^{2}+25^{2} \\
& R=65 \mathrm{~mm}
\end{aligned}
$$

The strain is proportional to the change in radius to

- the inner edge (minus $1 / 2$ thickness)
- the outer edge (plus $1 / 2$ thickness)

$$
\begin{aligned}
& \varepsilon=\left(\frac{65.25-65}{65}\right)=0.00384 \\
& \varepsilon=\left(\frac{64.75-65}{65}\right)=-0.00384
\end{aligned}
$$

The resistance is then

$$
\begin{aligned}
& R=120(1+2.14 \varepsilon) \\
& R=120.98769 \Omega \text { outer edge } \\
& R=119.01231 \Omega \quad \text { inner edge }
\end{aligned}
$$

Assume

- Two strain gagues (one inner edge, one outer edge)
- 10 V power

The voltage across the voltage divider is

$$
\begin{aligned}
& V=5.0000 V \quad \text { strain }=0 \\
& V=\left(\frac{120.9807}{120.9807+119.01231}\right) 10 V=5.04115 \mathrm{~V} \quad \text { strain }=+/-0.00384
\end{aligned}
$$

The gain needed is then

$$
\text { gain }=\left(\frac{10 V-0 V}{5.04115 V-5.000 V}\right)=242.99
$$

If you use two more strain gagues, you only need half the gain (121.5) at $4 x$ the cost

