ECE 321 - Homework \#5

DC Analsis of Transtor Amplfiers, 2-Ports, CE Amplifiers. Due Monday, May 4th
Please make the subject "ECE $321 \mathrm{HWH4}$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine the Q-point for the following transistor circuit. Assume C 's are large and assume 3904 transistors:

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=200$

Change R1 and R2 to their Thevenin equivalent (Rb and Vb)

$$
\begin{aligned}
& R_{b}=700 k| | 300 k=210 k \\
& V_{b}=\left(\frac{300 k}{300 k+700 k}\right) 12 V=3.6 V
\end{aligned}
$$

Find Ib

$$
\begin{aligned}
& I_{b}=\left(\frac{3.6 V-0.7 V}{210 k+(1+\beta) 1 k}\right)=7.056 \mu \mathrm{~A} \\
& V_{c e}=12-3 k \cdot I_{c}-1 k\left(I_{c}+I_{b}\right)=6.348 V
\end{aligned}
$$

2) Modify this circuit so that

- The Q-point is stabilized for variations in β, and
- The Q-point is Vce $=6.0 \mathrm{~V}$

To stabilize the Q-point

$$
(1+\beta) R_{e}=210 k \gg R_{b}
$$

Let $\mathrm{Rb}=20 \mathrm{k}$

$$
\begin{aligned}
& V_{c e}=6 \mathrm{~V}=3 \mathrm{k} \cdot I_{c}+1 k\left(I_{c}+I_{b}\right) \\
& I_{c}=1.498 \mu A \\
& I_{b}=7.491 \mu A \\
& V_{b}=R_{b} I_{b}+0.7+R_{e}\left(I_{c}+I_{e}\right) \\
& V_{b}=2.355 \mathrm{~V}
\end{aligned}
$$

Solveing for R1 and R2

$$
\begin{aligned}
& \left(\frac{R_{1} R 2}{R_{1}+R_{2}}\right)=20 \mathrm{k} \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=2.355 \mathrm{~V} \\
& \mathrm{R} 1=101.9 \mathrm{k} \quad \mathrm{R} 2=24.88 \mathrm{k}
\end{aligned}
$$

From this point on, use the circuit you designed for problem \#2
3) Draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier

$$
r_{f}=\left(\frac{0.052}{I_{b}}\right)=\left(\frac{0.052}{7.491 \mu A}\right)=6942
$$

This gives:

$$
\begin{aligned}
& \mathrm{Ai}=0 \\
& R_{\text {in }}=R_{1}\left\|R_{2}\right\| r_{f}=5154 \Omega \\
& A_{o}=-\frac{\beta R_{c}}{r_{f}}=-116.4 \\
& R_{\text {out }}=3 k
\end{aligned}
$$

4) Simulate this circuit in CircuitLab. Verify each of the 2 -port parameters at 1 kHz

- Rin
- Rout
- Ao

Ao $=162.1$

- $\mathrm{R} 5=1 \mathrm{M}$
- $\mathrm{R} 8=0$
- Measured Vout: 162.1 mV (meaning Ao $=162.1$ vs. -116.4 computed)

Rout: Reduce R5 to 3k. This should drip the output by $1 / 2$

- Vout $=83.4 \mathrm{mV}$.

$$
\begin{aligned}
& V_{\text {out }}=83.4 m V=\left(\frac{3000}{3000+R_{\text {out }}}\right) 162.1 m V \\
& R_{\text {out }}=\left(\frac{83.4 m V}{162.1 m V-83.4 m V}\right) 3 k=3179 \Omega \quad(\text { vs } 3000 \text { computed })
\end{aligned}
$$

Rin: Rout $=10 \mathrm{M}$, increase R8 to equal Rin (5154). Measure Vout

- Vout $=51.32 \mathrm{mV}$

$$
\begin{aligned}
& V_{\text {out }}=51.32 m V=\left(\frac{5154}{5154+R_{\text {in }}}\right) 162.1 m V \\
& R_{\text {in }}=\left(\frac{51.32 m V}{162.1 m V-51.32 m V}\right) 5154=2388 \Omega
\end{aligned}
$$

5) Remove Ce. Now draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier

Ai: 0
Rin: Apply 1V to Vin, compute the current

$$
\begin{aligned}
& R_{\text {in }}=R_{1}\left\|R_{2}\right\|\left(r_{f}+(1+\beta) R_{e}\right) \\
& R_{\text {in }}=18.25 k \Omega
\end{aligned}
$$

Rout: 3k
Aout: Apply 1V to the input

$$
\begin{aligned}
& I_{b}=\frac{1 V}{r_{f}+[1+\beta] R_{e}}=4.809 \mu A \\
& I_{c}=200 I_{b}=961.8 \mu A \\
& V_{\text {out }}=-R_{c} I_{c}=-2.885
\end{aligned}
$$

Aout $=-2.885$

6) Simulate this circuit in CircuitLab. Verify each of the 2-port parameters at 1 kHz

- Rin
- Rout
- Ao

Ao: $\mathrm{R} 8=0, \mathrm{R} 5=1 \mathrm{M}$

- $\mathrm{Ao}=-2.914$ (vs. 2.885 computed)

Rout: $\mathrm{R} 8=0, \mathrm{R} 5=3 \mathrm{k}$

- $\mathrm{Ao}=1.464 \mathrm{mV}$
- $R_{\text {out }}=\left(\frac{1.464 m V}{2.914 m V-1.464 m V}\right) 3000=3029 \Omega \quad$ (vs. 3000 computed)

Rin: R8 $=20 \mathrm{k}, \mathrm{R} 5=1 \mathrm{M}$

- Rout $=1.364 \mathrm{mV}$
- $R_{\text {in }}=\left(\frac{1.364 m V}{2.914 m V-1.364 m V}\right) 20 k=17.6 \mathrm{k} \Omega$
(vs. 18.25 k computed)

Sample Calculation: Rin

$$
\left(\frac{R_{i n}}{R_{i n}+20 k}\right) 2.914 m V=1.364 m V
$$

Solve for Rin and you get the previous equation

