ECE 321-Quiz \#1 - Name

Op-Amp Amplifiers \& mixers. Due midnight, April 9th Open-Book. Open Notes. Calculators, Matlab permitted.

1) Non-Ideal Op Amp: Write the voltage node equations for V1..V5. You don't need to solve

- Assume $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$.

$V_{1}=3$
$\left(\frac{V_{2}-V_{1}}{1 k}\right)+\left(\frac{V_{2}-V_{6}}{-j 2 k}\right)+\left(\frac{V_{2}-V_{3}}{-j 3 k}\right)+\left(\frac{V_{2}}{5 k}\right)=0$
$\left(\frac{V_{3}-V_{2}}{-j 3 k}\right)+\left(\frac{V_{3}-V_{6}}{R}\right)+\left(\frac{V_{3}}{1 M}\right)=0$
$V_{4}=0$
$V_{5}=2000\left(V_{4}-V_{3}\right)$
$\left(\frac{V_{6}-V_{2}}{-j 2 k}\right)+\left(\frac{V_{6}-V_{3}}{R}\right)+\left(\frac{V_{6}-V_{5}}{50}\right)=0$

2) Ideal Op-Amp. Give 4 equations which allow you to solve for the four unknown voltages. You do not need to solve.

- Assume ideal op-amps.
- Assume $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$.

$$
V_{1}=3
$$

$$
\begin{aligned}
& \left(\frac{V_{2}-V_{1}}{1 k}\right)+\left(\frac{V_{2}-V_{6}}{-j 2 k}\right)+\left(\frac{V_{2}-V_{3}}{-j 3 k}\right)+\left(\frac{V_{2}}{5 k}\right)=0 \\
& \left(\frac{V_{3}-V_{2}}{-j 3 k}\right)+\left(\frac{V_{3}-V_{6}}{R}\right)+\left(\frac{V_{3}}{1 M}\right)=0
\end{aligned}
$$

$(\mathrm{Vp}=\mathrm{Vm})$

$$
V_{3}=0
$$

3) Determine Y as a funciton of A, B, and C.

- Assume ideal op-amps
- Assume $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$.

By superposition: $B=C=0$

$$
\begin{aligned}
& V_{p}=\left(\frac{2}{3}\right) A \\
& Y=\left(1+\frac{R}{300}\right) V_{p}=\left(1+\frac{R}{300}\right)\left(\frac{2}{3}\right) A
\end{aligned}
$$

$\mathrm{A}=\mathrm{C}=0$

$$
\begin{aligned}
& V_{p}=\left(\frac{1}{3}\right) B \\
& Y=\left(1+\frac{R}{300}\right)\left(\frac{1}{3}\right) B
\end{aligned}
$$

$\mathrm{A}=\mathrm{B}=0$

$$
Y=-\left(\frac{R}{300}\right) C
$$

By superposition

$$
Y=\left(1+\frac{R}{300}\right)\left(\frac{2}{3}\right) A+\left(1+\frac{R}{300}\right)\left(\frac{1}{3}\right) B-\left(\frac{R}{300}\right) C
$$

$\mathrm{R}=1514$ Ohms

$$
Y=4.0311 A+2.0156 B-5.0467 C
$$

4) Determine the voltages V1..V7 for the following circuit.

- Assume ideal op-amps.
- Assume $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514$.

V 1	V 2	V 3	V 4	V 5	V 6	V 7
5.321 V	$\mathbf{4 V}$	$\mathbf{2 V}$	0.679 V	$\mathbf{3 . 5 4 7 V}$	$\mathbf{3 . 5 4 7 V}$	$\mathbf{9 . 2 9 4 V}$

With negative feedback, $\mathrm{Vp}=\mathrm{Vm}$

- $\mathrm{V} 2=4 \mathrm{~V}$
- $\mathrm{V} 3=2 \mathrm{~V}$
- $\mathrm{V} 5=\mathrm{V} 6$

The current from V2 to V3 is

$$
\begin{aligned}
& I=\left(\frac{4 V-2 V}{1514}\right)=1.321 m A \\
& V_{1}=V_{2}+1 k \cdot I=5.321 V \\
& V_{4}=2-1 k \cdot I=0.679 V \\
& V_{5}=\left(\frac{2}{3}\right) V_{1}=3.547 V
\end{aligned}
$$

To find V7, two approaches

$$
\left(\frac{V_{6}-V_{4}}{1 k}\right)+\left(\frac{V_{6}-V_{7}}{2 k}\right)=0
$$

or note that the last stage is an instrumentation amplifier with a gain of 2

$$
V_{7}=2\left(V_{1}-V_{4}\right)
$$

5) Design a circuit to implement

$$
\mathrm{Y}=2 \mathrm{X}-4
$$

Many solutions. If you use an instrumentation amplifier, rewrite as

$$
\begin{aligned}
& Y=2(X-2) \\
& Y=\left(\frac{R_{1}}{R_{2}}\right)(A-B)
\end{aligned}
$$

6) Design a circuit to implement

$$
\mathrm{Y}=2 \mathrm{~A}-3 \mathrm{~B}
$$

There are many solutions. Using an instrumentation amplifier

$$
Y=3\left(\frac{2}{3} A-B\right)
$$

Using inverting amlfiers

