ECE 321-Quiz \#2 - Name

Push-Pull Amplifiers, Temperature Sensors. Calculators, Matlab permitted.

1) Push-Pull Amplifier: Voltage Output. Assume ideal silicon diodes and ideal silicon transistors with

- $\mathrm{Vbe}=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- Vce(sat) $=0.2 \mathrm{~V}$

Also assume that

- All voltages are limited to -15 V to +15 V .
- $R=1000+100$ * (your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514$ Ohms Determine the voltages and currents wen $\mathrm{X}=+3 \mathrm{~V}$.

$\stackrel{R}{1000+10 \mathrm{M}_{0}+\text { Day }}$	V1	V2	v3	14	15
1514	$8.224 V$	7.524V	3V $v_{p}=v_{m}$	18.5mA	945.8mA

$$
\begin{aligned}
& V_{3}=V_{m}=V_{p}=3 \mathrm{~V} \\
& V_{2}=\left(1+\frac{1514}{1000}\right) V_{3}=7.524 \mathrm{~V} \\
& V_{1}=V_{2}+0.7 \mathrm{~V}=8.224 \mathrm{~V} \\
& I_{5}=\left(\frac{V_{2}}{R+1000}\right)+\left(\frac{V_{2}}{8}\right)=945.8 \mathrm{~mA} \\
& I_{4}=\left(\frac{1}{\beta+1}\right) I_{5}=18.5 \mathrm{~mA}
\end{aligned}
$$

2) Push-Pull Amplifier: Voltage Output. Assume ideal silicon diodes and ideal silicon transistors with

- \quad Vbe $=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- $\operatorname{Vce}($ sat $)=0.2 \mathrm{~V}$

Also assume that

- The push-pull amplifier is fed by +5 V and -5 V ,
- The op-amp's output is limited to 0 V to +5 V , and
- $\mathrm{R}=1000+100$ * (your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514$ Ohms

Determine the voltages and currents wen $\mathrm{X}=+3 \mathrm{~V}$.

$\begin{array}{\|c} \mathrm{R} \\ 1000+100 * \mathrm{Mo}+\text { Day } \end{array}$	V1	V2	V3	I4	I5
1514	5.00 V power supply limit	V1 - 0.7V	1.710V voltage division	10.6mA	539.2mA

The op-amp tries to force $\mathrm{Vp}=\mathrm{Vm}$. To do this, you need the results from problem \#1. ($\mathrm{V} 1=8.22 \mathrm{~V}$). V1 clips at +5 V due to the power supply limit, resulting in $\mathrm{V} 1=5 \mathrm{~V}$.
$\mathrm{V} 2=\mathrm{V} 1-0.7 \mathrm{~V}=4.3 \mathrm{~V}$
$\mathrm{V} 3=1.710 \mathrm{~V}$ by voltage division

Note that V p is no longer equal to Vm . The op-amp does the best it can given the power supply limitation
3) Push-Pull Amplifier: Current Output. Assume ideal silicon diodes and ideal silicon transistors with

- \quad Vbel $=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- \mid Vce(sat) $\mid=0.2 \mathrm{~V}$

Determine the voltages and currents wen $\mathrm{X}=+2 \mathrm{~V}$. Assume

- $\mathrm{R}=1000+100$ * (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514 \mathrm{Ohms}$

$\frac{\mathrm{R}}{1000+100^{*} \mathrm{Mo}+\text { Day }}$	V1	V2	V3	I4	I5
1514	$\begin{aligned} & \text { 4.60V } \\ & V 2+0.7 v \end{aligned}$	$\begin{gathered} 3.90 V \\ v 3+1.9 v \end{gathered}$	2.00 V $\mathrm{Vp}=\mathrm{Vm}$	26.42 A	$1.321 n A$

4) RTD. Assume the voltage - resistance relationship for an iron RTD temperature sensor is

$$
R_{t}=1000 \cdot(1+0.00651 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- +10 V at +40 C

Let $\mathrm{R}=1000+100$ * (your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514$ Ohms

At 0C

- $\mathrm{Rt}=1000$ Ohms
- $\mathrm{X}=3.9777 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$

At +40 C

- $\mathrm{Rt}=1261.6 \mathrm{Ohms}$
- $\mathrm{X}=4.5453 \mathrm{~V}$
- $\mathrm{Y}=10 \mathrm{~V}$

As X goes up, Y goes up. Connect to the + input.
$\mathrm{Y}=0$ when $\mathrm{X}=3.9777 \mathrm{~V}$. Make the offset 3.9777 V
The gain needed is

$$
\text { gain }=\left(\frac{10 V-0 V}{4.5453 V-3.9777 V}\right)=17.62
$$

5) Thermistor. Assume the voltage - resistance relationship for a thermistor is

$$
R_{t}=1000 \cdot \exp \left(\frac{4440}{T+273}-\frac{4440}{298}\right) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- +10 V at +40 C

Let $\mathrm{R}=1000+100 *$ (your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514$ Ohms

At 0C

- $\mathrm{Rt}=3931.4 \mathrm{Ohms}$
- $\mathrm{X}=7.2105 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$

At +40 C

- $\mathrm{Rt}=498.67 \mathrm{Ohms}$
- $\mathrm{X}=2.4439 \mathrm{~V}$
- $\mathrm{Y}=10 \mathrm{~V}$

As X goes down, Y goes up. Connect to the minus input
$\mathrm{Y}=0$ when $\mathrm{X}=7.2105 \mathrm{~V}$. Make the offset 7.2105 V
The gain needed is

$$
\operatorname{gain}=\left(\frac{10 V-0 V}{7 / 2105 V-2.4439 V}\right)=2.0979
$$

Make the resistor ration $2.0979: 1$
6) Temperature Sensor: 555 Timer. Assume

- $\mathrm{Ra}=500$ Ohms
- $\mathrm{R}=1000+100^{*}($ your birth month $)+$ (your birthday)

Determine the frequency the 555 timer will output when

- $\mathrm{Rt}=3320$ Ohms (0C), and
- $\mathrm{Rt}=533$ Ohms $(+40 \mathrm{C})$
note:

$$
T=\text { period }=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

$$
f=\frac{1}{T} \quad \mathrm{~Hz}
$$

R	$0 \mathrm{C}(\mathrm{Rt}=3320)$		+40C (Rt = 533)	
1514	R2	Hz	R2	Hz
	10840 mms	346 Hz	$6140 h \mathrm{~m}$	446.9 Hz

0C:
$R_{2}=\left(\frac{\left(R_{t}+R_{a}\right) R}{R_{t}+R_{a}+R}\right)=1084.26 \Omega$
period $=T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)=2.889 \mathrm{~ms}$
$f=\frac{1}{T}=346 \mathrm{~Hz}$
40 C
$R_{2}=\left(\frac{\left(R_{t}+R_{a}\right) R}{R_{+}+R_{a}+R}\right)=614 \Omega$
period $=T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)=2.238 \mathrm{~ms}$
$f=\frac{1}{T}=446.9 \mathrm{~Hz}$

