## ECE 321-Quiz \#2 - Name

## Push-Pull Amplifiers, Temperature Sensors

Calculators, Matlab permitted.

1) Push-Pull Amplifier: Voltage Output. Assume ideal silicon diodes and ideal silicon transistors with

- $\quad$ Vbe $=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- $\operatorname{Vce}(s a t)=0.2 \mathrm{~V}$

Also assume that

- All voltages are limited to -15 V to +15 V .
- $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$ Ohms Determine the voltages and currents wen $\mathrm{X}=+3 \mathrm{~V}$.

| R | V1 | V2 | V3 | I4 | I5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1000+100^{*}$ Mo + Day |  |  |  |  |  |
|  |  |  |  |  |  |


2) Push-Pull Amplifier: Voltage Output. Assume ideal silicon diodes and ideal silicon transistors with

- $\quad$ Vbe $=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- $\operatorname{Vce}($ sat $)=0.2 \mathrm{~V}$

Also assume that

- The push-pull amplifier is fed by +5 V and -5 V ,
- The op-amp's output is limited to 0 V to +5 V , and
- $\mathrm{R}=1000+100$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$ Ohms

Determine the voltages and currents wen $\mathrm{X}=+3 \mathrm{~V}$.

| R | V1 | V2 | V3 | I4 | I5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1000+100^{*}$ Mo + Day |  |  |  |  |  |
|  |  |  |  |  |  |


3) Push-Pull Amplifier: Current Output. Assume ideal silicon diodes and ideal silicon transistors with

- $\quad$ Vbel $=0.7 \mathrm{~V}$
- Current gain $=\beta=50$
- $\mid$ Vce(sat) $\mid=0.2 \mathrm{~V}$

Determine the voltages and currents wen $\mathrm{X}=+2 \mathrm{~V}$. Assume

- $\mathrm{R}=1000+100$ ( your birth month) + (your birth day). For example, May 14th gives $\mathrm{R}=1514 \mathrm{Ohms}$

| R | V1 | V2 | V3 | I4 | I5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1000+100^{*}$ Mo + Day |  |  |  |  |  |
|  |  |  |  |  |  |


4) RTD. Assume the voltage - resistance relationship for an iron RTD temperature sensor is

$$
R_{t}=1000 \cdot(1+0.00651 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- +10 V at +40 C

Let $\mathrm{R}=1000+100$ * (your birth month) + (your birth day). For example, May 14th gives R = 1514 Ohms

5) Thermistor. Assume the voltage - resistance relationship for a thermistor is

$$
R_{t}=1000 \cdot \exp \left(\frac{4440}{T+273}-\frac{4440}{298}\right) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- +10 V at +40 C

Let $\mathrm{R}=1000+100 *$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1514$ Ohms

6) Temperature Sensor: 555 Timer. Assume

- $\mathrm{Ra}=500 \mathrm{Ohms}$
- $\mathrm{R}=1000+100^{*}($ your birth month $)+$ (your birthday $)$

Determine the frequency the 555 timer will output when

- $\mathrm{Rt}=3320$ Ohms (0C), and
- $\mathrm{Rt}=533$ Ohms $(+40 \mathrm{C})$
note:

$$
T=\text { period }=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

$$
f=\frac{1}{T} \quad \mathrm{~Hz}
$$

| R | $0 \mathrm{C}(\mathrm{Rt}=3320)$ |  | +40C (Rt = 533) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | R2 | Hz | R2 | Hz |
|  |  |  |  |  |



