ECE 321-Quiz \#3 - Name

Calibration, Active Filters, Poles \& Zeros. Due midnight, April 22, 2020
Calculators, Matlab, tarot cards permitted. Just not someone else.

1) Calibration: Given $y(x)$ shown below, determine the following:

Straight-line approximation for $\mathrm{y}=\mathrm{f}(\mathrm{x})$	calibration function $\mathrm{y}=\mathrm{ax}+\mathrm{b}$	actual y when $\mathrm{x}=4$	estimated y when $\mathrm{x}=4$
show on graph	$\mathrm{y}=-\mathbf{- 0 . 6 6 7 x}+5.33$	$\mathbf{1 . 8}$	$\mathbf{2 . 6 7}$

Step 1) Draw a line to approximate $\mathrm{y}(\mathrm{x})$ (shown in orange)
Step 2) Determine the slop

$$
\text { slope }=\left(\frac{\text { change in } y}{\text { change in } x}\right)=\left(\frac{4-2}{2-5}\right)=-0.667
$$

Step 3) Determine the offset. Plug in a point (any point). Pick $(x=5, y=2)$

$$
y=a x+b
$$

$$
2=(-0.667)(5)+b
$$

$$
b=5.333
$$

so

$$
y=-0.667 x+5.33
$$

2) Calibration: A thermistor has the followint resistance vs. temperature

degrees C (T)	0C	10C
Ohms (x)	4695.4 Ohms	2832.4 Ohms

2a) Use endpoint calibration to determine the resistance vs. temperature between 0C and 10C in the form of

$$
\mathrm{T}=\mathrm{ax}+\mathrm{b} \quad x=\text { resistance in Ohms }
$$

2b) From your curve fit, determine the temeprature if the resistance is R ohms where

- $\mathrm{R}=1000+100$ * (your birth month) + (birth date). May 14th gives $\mathrm{R}=1514$ Ohms.

a	b	R	temperature when $\mathrm{x}=\mathrm{R}$
$\mathbf{- 0 . 0 0 5 3 7}$	25.2	$1000+100^{*} \mathrm{mo}+$ day	

$y=a x+b$
Step 1) Determine the slope
slope $=\left(\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}\right)=\left(\frac{10 C-0 C}{2832.4-4695.4}\right)=-0.00537 \frac{\text { degree }}{\text { ohm }}$
Step 2) Determine the offset (b). Plug in a point
$T=a x+b$
$0 C=\left(-0.00537 \frac{C}{\Omega}\right)(4695.4 \Omega)+b$
$b=25.203 \Omega$
3) Active Filters. Real Poles. Find R and C to implement

$$
Y=\left(\frac{10,000}{(s+10)(s+m)(s+d)}\right) X
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

$\text { birth }_{m}^{\mathrm{m}} \text { month }$	$\text { birth day }^{\text {d }}$	C1	C2	С3	R4
5	14	100uF	20uF	0.714uF	1.3285M

$\left(\frac{1}{R_{1} C_{1}}\right)=10$
$\mathrm{R} 1=1 \mathrm{k}$
$\mathrm{C} 1=100 \mathrm{uF}$
$\left(\frac{1}{R_{2} C_{2}}\right)=m=5$
$\mathrm{R} 2=10 \mathrm{k}$
$\mathrm{C} 2=20 \mathrm{uF}$
$\left(\frac{1}{R_{3} C_{3}}\right)=d=14$
$\mathrm{R} 3=100 \mathrm{k}$
$\mathrm{C} 3=0.714 \mathrm{uF}$
DC gain

$$
\left(\frac{10,000}{(s+10)(s+m)(s+d)}\right)_{s=0}=14.285=\left(1+\frac{R_{4}}{100 k}\right) \quad \mathrm{R} 4=1.3285 \mathrm{M}
$$

4) Active Filters: Complex Poles: Find R and C to implement

$$
\begin{aligned}
& Y=\left(\frac{10,000}{(s+10)(s+m+j d)(s+m-j d)}\right) X \\
& Y=\left(\frac{10,000}{(s+10)(s+5+j 14)(s+5-j 14)}\right) X=\left(\frac{10,000}{(s+10)\left(s+14.87 \angle \pm 70.34^{0}\right)}\right) X
\end{aligned}
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

m	d	C1	C2	С3	R4
5	14	100uF	6.72uF	6.72uF	132.7k

$$
\left(\frac{1}{R_{1} C_{1}}\right)=10
$$

$$
\mathrm{R} 1=1 \mathrm{k}
$$

$$
\mathrm{C} 1=100 \mathrm{uF}
$$

$$
\left(\frac{1}{R_{2} C_{2}}\right)=14.87
$$

$$
\mathrm{R} 2=10 \mathrm{k}
$$

$$
\mathrm{C} 2=6.72 \mathrm{uF}
$$

$$
3-k=2 \cos \left(70.34^{0}\right)
$$

$$
k=2.327=1+\frac{R_{4}}{100 k} \quad \mathrm{R} 4=132.7 \mathrm{k}
$$

Note: The output has a DC gain of 2.327 (vs. 4.52249), meaning the output is actually 0.514 Y
5) Filters: Assume X and Y are related by the transfer function

$$
Y=\left(\frac{100}{(s+m)(s+d)}\right) X=\left(\frac{100}{(s+5)(s+14)}\right) X=\left(\frac{100}{s^{2}+19 s+70}\right) X
$$

where

- m is your birth month (1..12) and
- d is your birth day (1.31).
a) What is the differential equation relating x and y ?

$$
y^{\prime \prime}+19 y^{\prime}+70 y=100 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=3+4 \cos (5 t)+6 \sin (5 t)
$$

m	d	diffy eq	$y(t)$
5	14	$y^{\prime \prime}+19 y^{\prime}+70 y=100 x$	$4.825-3.529 \cos (5 t)+5.882 \sin (5 t)$

$\mathrm{x}(\mathrm{t})=3$

$$
\begin{gathered}
Y=\left(\frac{100}{(s+5)(s+14)}\right)_{s=0} \cdot(3) \\
Y=4.285 \\
\mathrm{x}(\mathrm{t})=4 \cos (5 \mathrm{t})+6 \sin (5 \mathrm{t}) \\
\mathrm{s}=\mathrm{j} 5 \\
\mathrm{X}=4-\mathrm{j} 6 \\
Y=\left(\frac{100}{(s+5)(s+14)}\right)_{s=j 5} \cdot(4-j 6) \\
Y=-3.529-j 5.882 \\
y(t)=-3.529 \cos (5 t)+5.882 \sin (5 t)
\end{gathered}
$$

The total answer is DC + Ac

$$
y(t)=4.825-3.529 \cos (5 t)+5.882 \sin (5 t)
$$

6) Determine the poles of a filter with the following gain vs. frequency (Bode) plot.

1st pole:
max gain $=30 \mathrm{rad} / \mathrm{sec}=$ complex part of pole
bandwidth $(70 \%$ gain $)=10 \mathrm{rad} / \mathrm{sec}=2 \times$ real part of pole
pole $=-5+j 30,-5-j 30$

2nd pole
max gain at $70 \mathrm{rad} / \mathrm{sec}=$ comples part of pole
bandwidth $=4 \mathrm{rad} / \mathrm{sec}=2 \mathrm{x}$ real part of pole
pole $=-2+j 70$

