ECE 321 - Quiz \#3-Name

Calibration, Active Filters, Poles \& Zeros. Due midnight, April 22, 2020
Calculators, Matlab, tarot cards permitted. Just not someone else.

1) Calibration: Given $y(x)$ shown below, determine the following:

Straight-line approximation for $\mathrm{y}=\mathrm{f}(\mathrm{x})$	calibration function $\mathrm{y}=\mathrm{ax}+\mathrm{b}$	actual y when $\mathrm{x}=4$	estimated y when $\mathrm{x}=4$
show on graph			

2) Calibration: A thermistor has the followint resistance vs. temperature

degrees C (T)	OC	10C
Ohms (x)	4695.4 Ohms	2832.4 Ohms

2a) Use endpoint calibration to determine the resistance vs. temperature between 0 C and 10 C in the form of

$$
\mathrm{T}=\mathrm{ax}+\mathrm{b} \quad x=\text { resistance in Ohms }
$$

2b) From your curve fit, determine the temeprature if the resistance is R ohms where

- $\mathrm{R}=1000+100$ * (your birth month) + (birth date). May 14th gives $\mathrm{R}=1514$ Ohms.

a	b	R	temperature when $\mathrm{x}=\mathrm{R}$

3) Active Filters. Real Poles. Find R and C to implement

$$
Y=\left(\frac{10,000}{(s+10)(s+m)(s+d)}\right) X
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

m birth month	d birth day	C1	C2	C3	R4

4) Active Filters: Complex Poles: Find R and C to implement

$$
Y=\left(\frac{10,000}{(s+10)(s+m+j d)(s+m-j d)}\right) X
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

m	d	C1	C2	C3	R4

5) Filters: Assume X and Y are related by the transfer function

$$
Y=\left(\frac{100}{(s+m)(s+d)}\right) X
$$

where

- m is your birth month (1..12) and
- d is your birth day (1.31).
a) What is the differential equation relating x and y ?
b) Determine $y(t)$ assuming

$$
x(t)=3+4 \cos (5 t)+6 \sin (5 t)
$$

m	d		diffy eq
			$\mathrm{y}(\mathrm{t})$

6) Determine the poles of a filter with the following gain vs. frequency (Bode) plot.

pole 1	pole 2

