ECE 321-Quiz \#4 - Name

Filters, Filter Design, Analog Computers. Due midnight, March 29th

1) X and Y are related by

$$
Y=\left(\frac{20 s+30}{(s+M)(s+D)}\right) X
$$

where

- M is your birth month (1..12), and
- D is your birth date (1..31)

Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=3+4 \sin (5 t)
$$

Let $\mathrm{M}=5, \mathrm{D}=14$

$$
Y=\left(\frac{20 s+30}{(s+5)(s+14)}\right) X
$$

Using superposition
$\mathrm{x}(\mathrm{t})=3$

$$
\begin{aligned}
& \mathrm{s}=0 \\
& Y=\left(\frac{20 s+30}{(s+5)(s+14)}\right)_{s=0} \cdot 3 \\
& Y=1.2857
\end{aligned}
$$

meaning $\mathrm{y}(\mathrm{t})=1.2857$.
$x(t)=4 \sin (5 t)$
$Y=\left(\frac{20 s+30}{(s+5)(s+14)}\right)_{s=j 5} \cdot(0-j 4)$
$Y=0.5973-j 3.9276$
meaning

$$
y(t)=0.5973 \cos (5 t)+3.9276 \sin (5 t)
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=1.2857+0.5973 \cos (5 t)+3.9276 \sin (5 t)
$$

2) Design an op-amp circuit (a.k.a. an analog computer) to implement

$$
Y=\left(\frac{20 s+30}{(s+M)(s+D)}\right) X
$$

where

- M is your birth month (1..12), and
- D is your birth date (1..31)

$$
\begin{aligned}
& Y=\left(\frac{20 s+30}{(s+5)(s+14)}\right) X=\left(\frac{20 s+30}{s^{2}+19 s+70}\right) X \\
& s^{2} Y=-19 s Y-70 Y+20 s X+30 X
\end{aligned}
$$

using analog comptuer notation

Adjusting the gains so they are all negative. Add an inverter when needed

Replace with op-amp ciruits

3) The transfer function for a 6th-order Chebychev filter with a corner at $1 \mathrm{rad} / \mathrm{sec}$ is

$$
G(s)=\left(\frac{0.1593}{\left(s+0.4722 \angle \pm 36.10^{0}\right)\left(s+0.8100 \angle \pm 69.83^{0}\right)\left(s+1.0436 \angle \pm 84.38^{0}\right)}\right)
$$

Give the transfer function for a 6th-order Chebychev filter with

- A DC gain of 1.000 and
- A corner at $\mathrm{X} \mathrm{rad} / \mathrm{sec}$
where
- $\mathrm{X}=1000+100^{*}($ your birth month $)+($ your birth date $)$
$X=1514$

$$
1514 * 0.4722=714.9
$$

$$
1514 * 0.81=1226.3
$$

$$
1514 * 1.0436=1580
$$

$$
G(s)=\left(\frac{0.1593 \cdot 1514^{6}}{\left(s+714.9 \angle \pm 36.10^{0}\right)\left(s+1226.3 \angle \pm 69.83^{0}\right)\left(s+1580 \angle \pm 84.38^{0}\right)}\right)
$$

4) Give the transfer function for a 7th-order Butterworth filter with

- A DC gain of 1.000 and
- A corner at X rad/sec
where
- $\mathrm{X}=1000+100^{*}($ your birth month $)+($ your birth date $)$

The angle between poles is

$$
\theta=\frac{180^{0}}{7}=25.71^{0}
$$

so

$$
G(s)=\left(\frac{1514^{7}}{(s+1514)\left(s+1514 \angle \pm 25.71^{0}\right)\left(s+1514 \angle \pm 51.42^{0}\right)\left(s+1514 \angle \pm 77.14^{0}\right)}\right)
$$

5) Specify a filter to meet the following requirements:

- $0.9<$ gain $<1.1 \quad 0<\mathrm{w}<300 \mathrm{rad} / \mathrm{sec}$
- gain $<0.1 \quad \mathrm{w}>450 \mathrm{rad} / \mathrm{sec}$

5a) How many poles does the filter need?
$5 b)$ Give the transfer function of a filter, $G(s)$, which meets these requirements
5c) What is the gain of your filter at 300 and $450 \mathrm{rad} / \mathrm{sec}$?

\# poles needed	$\mathrm{G}(\mathrm{s})$	Gain at 300 rad/sec	Gain at 450 rad/sec
6	$\left(\frac{0.1593 \cdot 300^{6}}{\left(s+141 \angle \pm 36.10^{0}\right)\left(s+243 \angle \pm 69.83^{0}\right)\left(s+313 \angle \pm 84.38^{0}\right)}\right)$	0.9925	0.0313

\# poles needed

$$
\begin{aligned}
& \left(\frac{300}{450}\right)^{n}<0.1 \\
& n>5.67
\end{aligned}
$$

Let $\mathrm{n}=6$ (so I can use the filter from problem \#2)
Let the corner be $300 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{0.1593 \cdot 300^{6}}{\left(s+141 \angle \pm 36.10^{0}\right)\left(s+243 \angle \pm 69.83^{0}\right)\left(s+313 \angle \pm 84.38^{0}\right)}\right)
$$

At $300 \mathrm{rad} / \mathrm{sec}$ (using Matlab)

```
>> p1 = 141 * exp(j*36.1*pi/180);
>> p2 = conj(p1);
>> p3 = 243*exp(j*69.83*pi/180);
>> p4 = conj(p3);
>> p5 = 313*exp(j*84.38*pi/180);
>> p6 = conj(p5);
>> num = abs(p1*p2*p3*p4*p5*p6);
>> G = zpk([],[p1,p2,p3,p4,p5,p6],num);
>> DC = evalfr(G,0)
    1.0000
>> G300 = abs(evalfr(G,j*300))
        0.9925
>> G450 = abs(evalfr(G,j*450))
    0.0313
```

6) The difference between a square wave and a sine wave is a square wave has a 3rd harmonic. Design a filter to remove the 3rd harmonic (make it 30x smaller in amplitude than the 1st harmonic)

- $0.9<$ gain <1.1
$0<\mathrm{w}<200 \mathrm{rad} / \mathrm{sec}$
- gain <0.1
$\mathrm{w}>300 \mathrm{rad} / \mathrm{sec}$

6a) How many poles does the filter need?
$6 b)$ Give the transfer function of a filter, $\mathrm{G}(\mathrm{s})$, which meets these requirements
6c) What is the gain of your filter at 200 and $300 \mathrm{rad} / \mathrm{sec}$?

\# poles needed	G(s)	Gain at 200 rad/sec	Gain at 300 $\mathrm{rad} / \mathrm{sec}$
6	$\left(\frac{0.1593 \cdot 200^{6}}{\left(s+94 \angle \pm 36.10^{0}\right)\left(s+162 \angle \pm 69.83^{0}\right)\left(s+209 \angle \pm 84.38^{\circ}\right)}\right)$	0.9882	0.0315

$$
\left(\frac{200}{300}\right)^{n}<0.1
$$

$n>5.67$
Let $\mathrm{n}=6$ so I can reuse the previous filter
Adjust the corner frequency to $200 \mathrm{rad} / \mathrm{sec}$

```
\(G(s)=\left(\frac{0.1593 \cdot 200^{6}}{\left(s+94 \angle \pm 36.10^{0}\right)\left(s+162 \angle \pm 69.83^{0}\right)\left(s+209 \angle \pm 84.38^{0}\right)}\right)\)
>> p1 = 94 * \(\exp (j * 36.1 * p i / 180)\);
>> p 2 = conj(p1);
>> p3 \(=162 * \exp (j * 69.83 * p i / 180)\);
>> p4 = conj(p3);
>> p5 = 209*exp(j*84.38*pi/180);
>> p6 = conj(p5);
>> num = abs(p1*p2*p3*p4*p5*p6);
>> G = zpk([],[p1,p2,p3,p4,p5,p6],num);
>> GO = evalfr(G,0)
    1.0000
>> G200 = abs(evalfr (G,j*200))
    0.9882
>> G300 = abs(evalfr(G,j*300))
    0.0315
```

