ECE 321-Quiz \#5 - Name

BJT Amplifiers. Due midnight, April 6th

1) BJT Amplifier: DC Analysis. Determine the Thevenin equivalent of R1 and R2 as well as the Q-point. Assume ideal silicon transistors:

- |Vbel $=0.7 \mathrm{~V}$
- $\beta=200$
- $\mathrm{Re}=1000+100$ (your birth month) + (your birth day). May 14th would give $\mathrm{R}=1514$ Ohms

Re	Vb	Rb	Vce	Ic
$1000+100^{*}$ mo + day				

2) BJT Amplifier: DC Design. Determine R1 and R2 so that

- The Q point is Vce $=6.00 \mathrm{~V}$ and
- The Q point is stabilized for variations in β

Assume

- Ideal silicon transistors ($\mathrm{Vbe}=0.7 \mathrm{~V}, \beta=200$)
- $\operatorname{Re}=1000+100^{*}$ (birth month) + (birth day). May 14 th gives $\mathrm{R}=1514$ Ohms

Re $1000+100^{*}$ mo + day	R 1	R 2	Vb	Rb

3) BJT: AC Analysis: Draw the small signal model for the following BJT amplifier. Assume

- $r_{f}=3000 \Omega$
- $\beta=200$

4) BJT: AC Analysis: Determine the 2-port model for the following CE amplifer.

rf				
$1000+100^{*} \mathrm{mo}+$ day	Rin	Ain	Rout	Ao

5) 2-Port model (experimental): Determine the 2-port parameters based upon the following experimental data:

Case 1:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = 0 Ohms
- $\mathrm{R} 2=10 \mathrm{M}$ Ohms
results in Vout $=173 \mathrm{mV}$

Case 2:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = X Ohms
- $\mathrm{R} 2=10 \mathrm{M} \mathrm{Ohms}$
results in Vout $=100 \mathrm{mV}$

Case 3

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = 0 Ohms
- R2 $=X$ Ohms
results in Vout $=50 \mathrm{mV}$

Assume

- $\mathrm{X}=1000+100^{*}$ (your birth month) + (your birth date) Ohms
- $\mathrm{Ai}=0$

X				
$1000+100^{*}$ mo + day	Rin	Ai	Rout	Ao
		$\mathbf{0}$		

6) Determine the 2-port model for the following cascaded CE amplfier

R	Rin	Ai	Rout	Ao
$1000+100^{*}$ mo + day				

