ECE 321 - Homework \#2

Push-Pull Amplifiers \& Tmperature Sensors. Due Monday, April 12th
Please make the subject "ECE $321 \mathrm{HW} \mathrm{H}^{2}$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Push-Pull Amplifiers

1) Assume you only have access to a +5 V power supply. Design a push-amplifier to drive an 8 -Ohm speaker

- Input: $0 . .5 \mathrm{~V}$ analog signal, capable of 22 mA
- Output: 8 Ohm speaker
- Relationship: $\mathrm{Y}=\mathrm{X}$

2) Simulate this design in CircuitLab. Verify

- Its operation (you can now drive an 8-Ohm speaker), and
- Its limitations (what voltage range are you able to output? 0V .. 5 V ?

There are a couple of ways to do this.

- DC Test: Apply constant votlages at V1 and check to see that V1 = V3.
- AC Test: Sweep the voltage in V1 and note where V1 $=$ V3.

$$
\mathrm{V} 1=\mathrm{V} 3 \text { for } 0 \mathrm{~V}<\mathrm{V} 1<4.5 \mathrm{~V}
$$

3) Build this circuit in hardware to amplify the output of your mixed. Verify

- Its operation (you can now drive an 8 -Ohm speaker), and
- Its limitations (what voltage range are you able to output? 0V .. 5 V ?

sine wave input: Output clips at 0 V and +3.7 V

Cow Bell: Time Response

Don't Fear the Reaper: Frequency Content. Cow Bell at 604Hz

Temperature Sensors

Assume you are using a thermistor where the temperature - resistance relationship is

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C .
4) Design a linearizing circuit so that the resistance is approximately linear from 10C to +30 C . Plot the resulting resitance vs. temperature relationship.

Using fminsearch and a lot of trial and error, one solution that works is

- $\mathrm{Ra}=100$
- $\mathrm{Rb}=820.0471$

```
function [ J ] = costR( Z )
    a = 100;
    b = Z(1);
    T = [10:0.1:30]';
    R = 1000 * exp(3905 ./ (T+273) - 3905/298);
    Z = (R+a)*b ./ (R+a+b);
    B = [T, T.^0];
    A = inv(B'*B)*B'*Z;
    plot(T,Z,'b',T,B*A,'r');
    pause(0.01);
    E = Z - B*A;
    J = sum(E.^2);
    end
```


5) Using the linearizing circuit from problem 4 , design a circuit which outputs

- 0 V at 10 C
- $\quad+5 \mathrm{~V}$ at +30 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.

At 10C

- $\mathrm{Z}=589.9731 \mathrm{Ohms}$
- $\mathrm{Vx}=1.139 \mathrm{~V}$
- $\mathrm{Vy}=0 \mathrm{~V}$

At 30C

- $Z=430.3386$ Ohms
- $\mathrm{Vx}=0.885 \mathrm{~V}$
- $V y=5 V$

The gain is

$$
\text { gain }=\left(\frac{5 V-0 V}{0.885 V-1.139 V}\right)=-19.715
$$

The output is 0 V when $\mathrm{Vx}=1.139 \mathrm{~V}$. Connect the offset to 1.139 V

Plotting the votlage vs. temperature

```
        \(\mathrm{Ra}=100\)
        \(\mathrm{Rb}=820.0471\)
        \(T=[10: 0.1: 30] ' ;\)
        \(R=1000 * \exp (3905 . /(T+273)-3905 / 298) ;\)
        \(Z=(R+R a) * R b . /(R+R a+R b) ;\)
\(V x=Z . /(Z+2000)\) * 5;
Vy = 19.715*(1.139 - Vx);
plot(T,Vx,'b', T, Vy,'r')
xlabel('Temperature (C)');
ylabel('Volts');
```


Voltage at Vx (blue) and Vy (red)
6) Using the linearizing circuit from problem 4, design a 555 timer which outputs 500 Hz at +10 C

- Determine the frequency it outputs from 0 C to +40 C

At $10 \mathrm{C}, \mathrm{R}=2002 \mathrm{Ohms}, \mathrm{Z}=589.9731$ Ohms
For 500 Hz

$$
2 m s=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

Let

- $\mathrm{R} 1=1 \mathrm{k}$
- $\mathrm{R} 2=\mathrm{Z}=589.9731$ Ohms
- $\mathrm{C}=1.324 \mathrm{uF}$

555 timer with a lienarizing circuit for the thermistor (Rx)

```
>> T = [0:0.1:40]';
>> R = 1000 * exp(3905 ./ (T+273) - 3905/298);
>> Ra = 100;
>> Rb = 820.0471;
>> Z = (R + Ra)*Rb ./ (R + Ra + Rb);
>> R1 = 1000;
>> C = 1.324e-6;
>> Period = (R1 + 2*Z)*C*log(2);
>> Hz = 1 ./ Period;
>> plot(T,Hz);
>> xlabel('Temperature (C)');
>> ylabel('Hz')
```


Frequency vs. Temperature for the 555 timer with a lienarizing circuit

