ECE 321 - Homework \#3

Calibration, Filter Circuits, and Frequency Response. Due Monday, April 19th
Please make the subject "ECE 321 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Calibration

Problem $1 \& 2$) Assume you are using a thermistor where the temperature - resistance relationship is

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C . Assume this is used along with a voltage divider (5 V source, 2 k resistor:

$$
V=\left(\frac{R}{R+2000}\right) \cdot 5 V
$$

1) Determine a calibration function of the form

$$
T \approx a V+b
$$

to estimate temperature over the range of $(+10 \mathrm{C} . .+30 \mathrm{C})$. What is the maximum error in this calibration function?

In matlab

```
>> T = [10:0.1:30]';
>> R = 1000 * exp(3905 ./ (T+273) - 3905/298);
>> V = R ./ (R+2000) * 5;
>> B = [V, V.^^0];
>> A = inv(B'*B)*B'*T
    -18.6498
    56.1622
>> plot(V,T,'b',V,B*A,'r')
>> xlabel('Voltage');
>> ylabel('Degrees C');
>> mean(T - B*A)
    -3.4679e-014
>> std(T - B*A)
    0.2555
>> max(abs(T - B*A))
    0.6120
```

Curve Fit:
$T \approx-18.6498 V+56.1622$
maximum error:
0.6120 degrees

Lienar Curve Fit: Actual Temperature (blue) and Estimated (red)
2) Determine a calibration function of the form

$$
T \approx a V^{3}+b V^{2}+c V+d
$$

to estimate temperature over the range of $(+10 \mathrm{C} . .+30 \mathrm{C})$. What is the maximum error in this calibration function?

```
>> B = [V.^3, V.^2, V, V.^0];
>> A = inv(B'*B)*B'*T
a -1.5830
b 12.2536
c -48.1492
d 78.5430
>> plot(V,T,'b',V,B*A,'r')
>> mean(T - B*A)
    2.9552e-010
>> std(T - B*A)
        0.0034
>> max(abs(T - B*A))
    0.0102
```


Filters

3) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{40}{(s+2)(s+7)}\right) X
$$

a) What is the differential equation relating x and y ?

Cross multiply

$$
\left(s^{2}+9 s+14\right) Y=40 X
$$

'sY' means 'the derivative of Y '

$$
y^{\prime \prime}+9 y^{\prime}+15 y=40 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=4+5 \cos (7 t)+6 \sin (7 t)
$$

Use superposition
$\mathrm{x}(\mathrm{t})=4$

$$
\begin{aligned}
& \mathrm{s}=0 \\
& \mathrm{X}=4 \\
& Y=\left(\frac{40}{(s+2)(s+7)}\right)_{s=0} \\
& Y=11.428
\end{aligned}
$$

meaning

$$
y(t)=11.428
$$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=5 \cos (7 \mathrm{t})+6 \sin (7 \mathrm{t}) \\
& \mathrm{s}=\mathrm{j} 7 \\
& \mathrm{X}=5-\mathrm{j} 6 \\
& Y=\left(\frac{40}{(s+2)(s+7)}\right)_{s=j 7} \cdot(5-j 6) \\
& Y=4.2588-j 0.8086
\end{aligned}
$$

meaning

$$
y(t)=4.2588 \cos (7 t)+0.8086 \sin (7 t)
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=11.4288+4.2588 \cos (7 t)+0.8086 \sin (7 t)
$$

Filter Design using fminsearch()

4) Design a filter of the form

$$
Y=\left(\frac{a c e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right) X
$$

to give a gain vs. frequency as close to $\mathrm{Gd}(\mathrm{s})$ as possible over the range of $(0,10) \mathrm{rad} / \mathrm{sec}$.

$$
G_{d}(j \omega)=\left\{\begin{array}{cc}
1 & 0<\omega<2 \\
0.5 & 2<\omega<4 \\
0 & \omega>4
\end{array}\right.
$$

Plot your filter's actual frequency response vs. it's ideal response (given by Gd).

In Matlab:

```
>> [Z,e] = fminsearch('costF',[1,2,3,4,5])
Z = 1.0704 1.2733 3.0809 0.5159 13.3705
e = 3.9449
>> [Z,e] = fminsearch('costF',Z)
Z = 1.0704 1.2733 3.0808 0.5159 13.3705
e = 3.9449
    G(s)=(\frac{44.0932}{(s+1.0704)(\mp@subsup{s}{}{2}+1.2733s+3.0809)(\mp@subsup{s}{}{2}+0.5159s+13.3704)}}
```


5) Design circuit to implement the filter you designed in problem \#4

Build this in three stages

$$
G(s)=\left(\frac{a}{s+1.0704}\right)\left(\frac{b}{\left(s^{2}+1.2733 s+3.0809\right)}\right)\left(\frac{c}{\left(s^{2}+0.5159 s+13.3704\right)}\right)
$$

Stage 2: $G_{2}=\left(\frac{b}{\left(s^{2}+1.2733 s+3.0809\right)}\right)=\left(\frac{b}{s+1.7552 \angle \pm 68.73^{0}}\right)$
$\frac{1}{R C}=1.7552$
$\mathrm{C}=1 \mathrm{uF}$
$\mathrm{R}=570 \mathrm{k}$
$3-k=2 \cos \left(68.73^{\circ}\right)$
$k=2.2745$
$\mathrm{R} 1=100 \mathrm{k}$
$\mathrm{R} 2=127.45 \mathrm{k}$

Stage 3: $G_{3}=\left(\frac{c}{s^{2}+0.5159 s+13.3704}\right)=\left(\frac{c}{s+3.6566 \angle \pm 85.95^{0}}\right)$

$$
\begin{aligned}
& \frac{1}{R C}=3.6566 \\
& \mathrm{C}=1 \mathrm{uF} \\
& \mathrm{R}=273 \mathrm{k} \\
& 3-k=2 \cos \left(85.95^{0}\right) \\
& k=2.8587 \\
& \mathrm{R} 1=100 \mathrm{k} \\
& \mathrm{R} 2=185.87 \mathrm{k}
\end{aligned}
$$

Stage 1: $G_{1}=\left(\frac{a}{s+1.0704}\right)$

$$
\begin{aligned}
& \frac{1}{R C}=1.0704 \\
& \mathrm{R}=93.4 \mathrm{k}(\ll \mathrm{R}(\text { Stage } 2)) \\
& \mathrm{C}=10 \mathrm{uF}
\end{aligned}
$$

The resulting DC gain is $\mathrm{k} * \mathrm{k}=(2.2745)(2.8587)=6.5021$
call the output 6.5021 Y

6) Check your filter using CircuitLab

