ECE 321 - Homework \#5

DC Analsis of Transtor Amplfiers, 2-Ports, CE Amplifiers. Due Monday, May 3rd
Please make the subject "ECE $321 \mathrm{HW} \# 4$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine the Q-point for the following transistor circuit. Assume C's are large and assume 3904 transistors:

- $\mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=200$

First, replace R1 and R2 with their Thevenin equivalent

$$
\begin{aligned}
& R_{b}=400 k| | 800 k=266.7 k \\
& V_{b}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=4.00 \mathrm{~V}
\end{aligned}
$$

Compute Ib

$$
\begin{aligned}
& -4+266.7 k \cdot I_{b}+0.7+500\left(I_{b}+I_{c}\right)=0 \\
& I_{b}=\left(\frac{4.00-0.7}{266.7 k+(1+\beta) \cdot 500}\right)=8.988 \mu A \\
& I_{c}=\beta I_{b}=1.798 m A
\end{aligned}
$$

Compute the Q-point

$$
V_{c e}=12-I_{c} R_{c}-\left(I_{c}+I_{b}\right) R_{e}=3.907 \mathrm{~V} \quad \text { active mode }
$$

2) Modify this circuit so that

- The Q-point is stabilized for variations in β, and
- The Q-point is Vce $=6.0 \mathrm{~V}$

This is similar to problem \#1, just go backwards (right to left)
To stabilize the Q-point, let

$$
R_{b} \ll(1+\beta) R_{e}=100.5 k
$$

Let $\mathrm{Rb}=10 \mathrm{k}$. To set the Q -point to 6.00 V

$$
\begin{aligned}
& V_{c e}=6.00 \mathrm{~V}=12-I_{c} R_{c}-\left(I_{c}+I_{b}\right) R_{e} \\
& I_{c}=\left(\frac{12 \mathrm{~V}-6 \mathrm{~V}}{R_{c}+\left(1+\frac{1}{200}\right) R_{e}}\right)=1.333 \mathrm{~mA} \\
& I_{b}=\frac{I_{c}}{\beta}=6.663 \mu \mathrm{~A} \\
& V_{b}=R_{b} I_{b}+0.7+R_{e}\left(I_{b}+I_{c}\right)=1.436 \mathrm{~V}
\end{aligned}
$$

Now find R1 and R2

$$
R_{1} \| R_{2}=R_{b}=10 k \quad\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 V=V_{b}=1.436 \mathrm{~V}
$$

Solving

$$
R_{1}=\left(\frac{12 V}{1.436 V}\right) 10 k=83.57 k \Omega \quad R_{2}=11.36 k \Omega
$$

From this point on, use the circuit you designed for problem \#2

3) Draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier

$$
r_{f}=\left(\frac{0.026 \mathrm{~V}}{I_{b}}\right)=\left(\frac{0.026 \mathrm{~V}}{6.663 \mu \mathrm{~A}}\right)=3902 \Omega
$$

From this

$$
\begin{aligned}
& \operatorname{Rin}=83.57 \mathrm{k}| | 11.36 \mathrm{k}| | 3902=2807 \\
& \operatorname{Ain}=0
\end{aligned}
$$

$$
\text { Rout }=4 \mathrm{k}
$$

$$
A_{o}=-\left(\frac{\beta R_{c}}{r_{f}}\right)=-\left(\frac{200 \cdot 4000}{3902}\right)=-205
$$

4) Simulate this circuit in CircuitLab. Verify each of the 2 -port parameters at 1 kHz

- Rin
- Rout
- Ao

CircuitLab circuit. hfe changed to 200 on the 3904
Ao: $\mathrm{R} 8=0, \mathrm{R} 5=1 \mathrm{M}, \mathrm{V} 0=1 \mathrm{mV} 1 \mathrm{kHz}$

- $\mathrm{Vc}=206.6 \mathrm{mV}$
- $\mathrm{V} 1=206.5 \mathrm{mV}$ (peak)
- $\mathrm{Ao}=\mathrm{V} 1 / \mathrm{V} 0=206.5$
(vs. -205 calculated)

$\mathrm{V} 0=1 \mathrm{mV}$ results in $\mathrm{V} 1=206.5 \mathrm{mV}$. Note: V0 needs to be small enough that V 1 is still a sine wave (i.e. no clipping)

Rin: $\mathrm{R} 8=2806, \mathrm{R} 5=1 \mathrm{M}, \mathrm{V} 0=1 \mathrm{mV} @ 1 \mathrm{kHz}$

- $\mathrm{Vo}=108.1 \mathrm{mV}$
- $\left(\frac{R_{i n}}{R_{\text {in }}+R_{8}}\right) 206.6 \mathrm{mV}=108.1 \mathrm{mV}$
- $\boldsymbol{R}_{\text {in }}=\left(\frac{108.1 m V}{206.6 m V-108.1 m V}\right) R_{8}=3079 \Omega$

Rout: $\mathrm{R} 8=0, \mathrm{R} 5=4 \mathrm{k}, \mathrm{V} 0=1 \mathrm{mV} @ 1 \mathrm{kHz}$

- $\mathrm{Vo}=107.1 \mathrm{mV}$
- $\left(\frac{4 k}{4 k+R_{\text {out }}}\right) 206.6 \mathrm{mV}=107.1 \mathrm{mV}$
- $R_{\text {out }}=\left(\frac{107.1 m V}{206.6 m V-107.1 m V}\right) 4 k=4305 \Omega$

	Rin	Ao	Rout
Calculated	2807 Ohms	-205	4000 Ohms
CircuitLab	3079 Ohms	-206.5	4305 Ohms

5) Remove Ce. Now draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier

Rin:

- Short Vout
- Apply 1V at Vin
- Compute the current at Iin

$$
\begin{aligned}
& I_{\text {in }}=\frac{1 V}{83.57 k}+\frac{1 V}{11.36 k}+\frac{1 V}{3902+(1+\beta) 500}=109.6 \mu A \\
& R_{\text {in }}=\frac{1 V}{109.6 \mu A}=9126 \Omega
\end{aligned}
$$

Rout:

- Short Vin
- This sets $\mathrm{Ib}=0$
- Rout $=4000$

Ao:

- Apply 1V at Vin

$$
I_{b}=\frac{1 V}{3902+(1+\beta) 500}=9.578 \mu \mathrm{~A}
$$

$$
200 I_{b}=1.916 \mathrm{~mA}
$$

$$
V_{o}=A_{o}=-4000 \cdot 200 I_{b}=-7.663
$$

6) Simulate this circuit in CircuitLab. Verify each of the 2-port parameters at 1 kHz

Ao:

- Change Ce to 1 nF (essentially remove it)
- Apply 1 mV @ 1 kHz to Vin
- Vout $=7.662 \mathrm{mV}$
- $\mathrm{Ao}=-7.662$

Rin:

- Add 9126 Ohms at Vin
- Apply 1 mV @ 1 kHz at Vin
- Vout $=3.856 \mathrm{mV}$

$$
R_{i n}=\left(\frac{3.856 m V}{7.662 m V-3.856 m V}\right) 9126 \Omega=9246 \Omega
$$

Rout:

- Change the load from 10 M to 4 k
- Apply 1 mV @ 1 kHz at Vin
- Vout $=3.836 \mathrm{mV}$

$$
R_{\text {out }}=\left(\frac{3.836 m V}{7.662 m V-3.836 m V}\right) 4000 \Omega=4010 \Omega
$$

	Rin	Ao	Rout
Calculated	9126 Ohms	-7.663	4000 Ohms
CircuitLab	9246 Ohms	-7.662	4010 Ohms

