ECE 321 - Homework \#2

Temperature Sensors, Audio \& Strain Sensors, Calibration \& Noise. Due Monday, April 11th
Please make the subject "ECE $321 \mathrm{HW} \# 2$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Temperature Sensors

Assume you are using a thermistor where the temperature - resistance relationship is

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C .

1) Design a linearizing circuit so that the resistance is approximately linear from 0 C to +30 C . Plot the resulting resitance vs. temperature relationship.
2) Using the linearizing circuit from problem 4 , design a circuit which outputs

- 0 V at 0 C
- +5 V at +30 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.

3) Using the linearizing circuit from problem 4 , design a 555 timer which outputs 500 Hz at +10 C

- Determine the frequency it outputs from 0 C to +30 C

Calibration

4) Assume a thermistor is used with a 1 k resistor to convert resistance to voltage:

$$
V=\left(\frac{R}{R+1000}\right) 10 V
$$

Determine a calibration function to determine temperature given the voltage as

$$
T \approx a V+b
$$

over the range of $(0 \mathrm{C},+30 \mathrm{C})$. What is the maximum error in your curve fit?
5) Repeat problem \#4 with a cubic curve fit.

$$
T \approx a V^{3}+b V^{2}+c V+d
$$

Audio / Strain Sensors

6) A strain sensor is connected to a metal rod to measure the force applied to the center of the beam. Assume

- The beam's thickness is 1 mm ,
- The beam's lenfgth is 100 mm ,
- The beam deflects 6 mm when a force of 2001b is applied to it, and
- The strain - resistance relationship of the strain sensor is

$$
R=120(1+2.14 \varepsilon) \Omega
$$

a) Determine the strain and the resistance when the beam deflects by 6 mm
b) Design a circuit which outputs

- 0 V at 0 lb force and
- +10 V at 200 lb force

Sound to Light

7) Assume the CdS light sensor has a resitance of

$$
R=1000+50 \sin (\omega t) \text { Ohms }
$$

determine the voltages at V1, V2, and V3 (both DC and AC. Peak-to-peak votlages are OK (and easier) for the AC voltages).

Hardware (option \#1)

8) Design a circuit to amplify a condenser micropohone to $0 . .5 \mathrm{~V}$

Note: You can also use a speaker as a microphone. From duality

- If you apply a voltage to a speaker, it produces sound
- If you apply sound to a speaker, it produces voltage

9) Test your audio amplifier with your amplifier with the push-pull amplifier from homework set \#1 and your amplifier in problem \#8.

Hardware (option \#2)

8) Build the light-to-sound circuit for problem \#7. Measure the voltages for a 1 kHz sine wave input.
9) Test your light-to-sound circuit with the push-pull amplifier from homework set \#1 and an audio signal from your cell phone (or similar device).
