ECE 321 - Homework \#3

Active Filters. Due Wednesday, April 20th
Please make the subject "ECE 321 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Filters

1) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{40}{(s+2)(s+7)}\right) X
$$

a) What is the differential equation relating x and y ?
b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=4+5 \cos (7 t)+6 \sin (7 t)
$$

Filter Design

2) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{500}{(s+2)(s+6)(s+12)}\right) X
$$

3) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{500}{\left(s^{2}+2 s+10\right)\left(s^{2}+4 s+20\right)}\right)
$$

4) Give the transfer function of a filter with the following gain vs. frequency

Filter Design using fminsearch()

5) Design a filter of the form

$$
Y=\left(\frac{a c e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right) X
$$

to give a gain vs. frequency as close to the following plot as possible over the range of $(0,10) \mathrm{rad} / \mathrm{sec}$.
Plot your filter's actual frequency response vs. it's ideal response (red line).

6) Design circuit to implement the filter you designed in problem \#5
7) Check your filter using CircuitLab

