ECE 321-Quiz \#1 - Name

Op-Amp Amplifiers \& mixers., Push-Pull Amplifiers

1) Give 7 equations which allow you to solve for the 7 unknown voltages. You do not need to solve.

- Assume ideal op-amps.
- Assume $\mathrm{R}=900+100^{*}$ (your birth month) + (your birth day).

$\mathrm{Vp}=\mathrm{Vm}$

$$
\begin{aligned}
& V_{2}=1 V \\
& V_{3}=2 V \\
& V_{5}=V_{6}
\end{aligned}
$$

Conservation of current

$$
\begin{aligned}
& \left(\frac{V_{2}-V_{1}}{3 k}\right)+\left(\frac{V_{2}-V_{3}}{R}\right)=0 \\
& \left(\frac{V_{3}-V_{2}}{R}\right)+\left(\frac{V_{3}-V_{4}}{4 k}\right)=0 \\
& \left(\frac{V_{5}-V_{1}}{1 k}\right)+\left(\frac{V_{5}}{2 k}\right)=0 \\
& \left(\frac{V_{6}-V_{4}}{5 k}\right)+\left(\frac{V_{6}-V_{7}}{6 k}\right)=0
\end{aligned}
$$

2) Determine Y as a funciton of A, B, and C.

- Assume ideal op-amps
- Assume $\mathrm{R}=900+100^{*}$ (your birth month) + (your birth day).

$$
\begin{aligned}
& V_{1}=\left(1+\frac{R}{1 k}\right) A \\
& V_{2}=-\left(\frac{R}{100}\right) B-\left(\frac{R}{200}\right) C \\
& Y=3\left(V_{1}-V_{2}\right) \\
& Y=3\left(1+\frac{R}{1 k}\right) A+\left(\frac{3 R}{100}\right) B+\left(\frac{3 R}{200}\right) C
\end{aligned}
$$

3) Design a circuit which outputs

$$
\mathrm{Y}=4+2 \mathrm{~A}+3 \mathrm{~B}
$$

note: the gain on A and B are positive
Assume a 10 V source is available

$$
\begin{aligned}
& X=\left(\frac{0.4 \cdot 10 V+2 A+3 B}{5.4}\right) \\
& Y=5.4 X
\end{aligned}
$$

4) Design a circuit which outputs

$$
\mathrm{Y}=4-2 \mathrm{~A}-3 \mathrm{~B}
$$

note: the gain on A and B are negative

5) Determine the voltages and currents for the following push-pull amlifier. Assume

- Ideal op-amps
- $\mathrm{R}=900+100^{*}($ your birth month $)+$ (your birth day $)$
- Transistors with:
- $\beta=30$
- $\left|V_{b e}\right|=0.7 \mathrm{~V}$

$\underset{\substack{\text { a00 } 100 \text { mex tay }}}{\mathrm{R}}$	V1	V2	V3	14	15
1414	5.7V	5.0V	2.0V	$45.63 \mathrm{uA}$	$1.414 \mathrm{~mA}$

6) Determine the voltages and currents for the following push-pull amlifier. Assume

- Ideal op-amps
- $\mathrm{R}=900+100^{*}$ (your birth month) + (your birth day)
- Transistors with
- $\beta=30$
- $\left|V_{b e}\right|=0.7 \mathrm{~V}$

$\underset{\substack{\text { 900 }+100^{2} 0+\text { day }}}{\mathrm{R}}$	V1	V2	V3	14	15
1414	8.70 V	8.00 V	5.00 V	114.1uA I5 / 31	$\begin{aligned} & \text { 3.536mA } \\ & 5 \mathrm{~V} / \mathrm{R} \end{aligned}$

