ECE 321-Quiz \#2 - Name

Sensors \& Calibration

1) A thermistor has a temperature-resistance relationship of (Digikey part number P1010TR-ND) where T is the temperature in degrees C .

$$
R_{t}=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

Assume

$$
\mathrm{R}=900+100^{*}(\text { your birth month })+(\text { your birth day })
$$

If $\mathrm{X}=2.20 \mathrm{~V}$, determine the resistance, R , and the temperature, T

${ }_{\substack{\mathrm{R} \\ \text { Lownotay }}}^{\text {dex }}$	$\underset{\text { vols }}{\substack{\text { fore }}}$		${ }_{\text {mexec }}^{\text {T }}$
1414 ohms	2.20 V	398.821 ohms	77.725 C

$2.2 \mathrm{~V}=\left(\frac{R_{t}}{1414+R_{t}}\right) 10 \mathrm{~V}$
$R_{t}=\left(\frac{2.2 V}{10 V-2.2 V}\right) 1414 \Omega=398.821 \Omega$
$398.821 \Omega=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega$
$T=77.725^{\circ} \mathrm{C}$
2) A thermistor has a temperature-resistance relationship of (Digikey part number $\mathrm{P}^{`} 1010 \mathrm{TR}-\mathrm{ND}$) where T is the temperature in degrees C .

$$
R_{t}=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

Design a circuit which outputs

- -10 V at -10 C and
- +10 V at +40 C

Assume

$$
\mathrm{R}=900+100^{*}(\text { your birth month })+(\text { your birth day })
$$

note: A linearizing circuit isn't required.

At $T=-10 C$

- $\mathrm{R}=17,902.117$ Ohms
- $X=9.268 \mathrm{~V}$
- $\mathrm{Y}=-10 \mathrm{~V}$

At T $=+40 \mathrm{C}$

- $\mathrm{R}=1576.179$ Oms
- $X=5.272 \mathrm{~V}$
- $\mathrm{Y}=+10 \mathrm{~V}$

As X goes down, Y goes up. Connect to the minus input
The gain is

$$
\text { gain }=\left(\frac{10 V-(-10 V)}{9.268 V-5.272 V}\right)=5.005
$$

At -10 C , the output is -10 V

$$
Y=-10 \mathrm{~V}=5.005(\mathrm{~A}-9.268 \mathrm{~V})
$$

$$
A=7.268 \mathrm{~V}
$$

3) Strain Sensor: A beam of length d deflects by 15 mm . Determine the

- The radius of curvature,
- Strain on the inside of the beam, and
- Strain on the outside of the beam.

Assume

- The length of the beam is d $\left(900+100^{*}\right.$ mo + day $) \mathrm{mm}$
- The thickness of the beam is 3 mm

length, d (mm) $900+100 * \mathrm{~m}+$ day	Radius of Curvature (mm)	Strain inside edge	Strain outside edge
$\mathbf{1 4 1 4 \mathbf { m m }}$	$16,669 \mathrm{~mm}$	-0.0000899	+0.0000899

$$
R^{2}=707^{2}+(R-15)^{2}
$$

Solving

$$
R=16,669.133 \mathrm{~mm}
$$

The strain is then

$$
\varepsilon=\left(\frac{1.5 \mathrm{~mm}}{16,669.133 \mathrm{~mm}}\right)=8.999 \cdot 10^{-5}
$$

4) Strain Sensor. Assume a strain sensor has a resistance - strain relationship of

$$
R_{t}=1000 \cdot(1+2.14 \varepsilon) \quad \Omega
$$

where

- $\mathrm{R}=900+100$ * (your birth month) + (your birth date)

Design a circuit which outputs

- 0 V at $\boldsymbol{\varepsilon}=0$ (zero strain) and
- +10 V at $\varepsilon=0.01 \quad($ strain $=0.01)$

0 Strain

- $\mathrm{Rt}=1000$ Ohms
- $X=4.143$ Volts
- $\mathrm{Y}=0 \mathrm{~V}$
+0.01 Strain
- $\mathrm{Rt}=1021.4 \mathrm{Ohms}$
- $X=4.194$ Volts
- $\mathrm{Y}=+10$ Volts

As X increases, Y increases

- Connect to the plus input
$\mathrm{Y}=0$ when $\mathrm{X}=4.143 \mathrm{~V}$
- Make the offset 4.143 Volts

The gain needed is

$$
\text { gain }=\left(\frac{10 V}{4.194 V-4.143 V}\right)=194.28
$$

5) A thermistor has a temperature-resistance relationship of

$$
R_{t}=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

where T is the temperature in degrees C . Assume the thermistor is used with a voltage divider so that

$$
V=\left(\frac{R_{t}}{R_{t}+R}\right) 10 V
$$

where

$$
\mathrm{R}=900+100 *(\text { your birth month })+(\text { your birth day })
$$

Determine the least squares curve fit for temperature as

$$
T=a V+b
$$

over the range of -10 C to +40 C .

```
>> T = [-10:0.01:40]';
>> Rt = 3000 * exp( 4000 ./ (T + 273) - 4000/298);
>> X = Rt ./ (Rt + 1414) * 10;
>> B = [X, X.^0];
>> A = inv(B'*B)*B'*T
A =
    -12.0515
    106.1119
    T\approx-12.05V+106.11
```

6) A thermistor has a temperature-resistance relationship of

$$
R_{t}=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

where T is the temperature in degrees C . Assume the thermistor is used with a voltage divider so that

$$
V=\left(\frac{R_{t}}{R_{t}+R}\right) 10 V
$$

where

$$
\mathrm{R}=900+100 *(\text { your birth month })+(\text { your birth day })
$$

Determine the least squares curve fit for temperature as

$$
T=a V^{2}+b V+c
$$

over the range of -10 C to +40 C .

```
>> T = [-10:0.01:40]';
>>Rt = 3000 * exp( 4000./ (T + 273) - 4000/298);
>> X = Rt ./ (Rt + 1414) * 10;
>> B = [X.^2, X, X.^0];
>> A = inv(B'*B)*B'*T
A =
    -1.2813
        6.8738
    38.0809
\[
T \approx-1.28 V^{2}+6.87 V+38.08
\]
```

