ECE 321-Quiz \#3 - Name

Filters

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{200}{(s+4)(s+6)}\right) X
$$

Find $y(t)$ assuming

$$
x(t)=10+5 \cos (m t)+d \sin (m t)
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)
$\mathrm{m}=5, \mathrm{~d}=14$

$$
x(t)=10+5 \cos (5 t)+14 \sin (5 t)
$$

DC Analysis

$$
\begin{aligned}
& x(t)=10 \\
& s=0 \\
& Y=\left(\frac{200}{(s+4)(s+6)}\right)_{s=0} \cdot(10+j 0) \\
& Y=83.333
\end{aligned}
$$

AC Analysis

$$
\begin{aligned}
& x(t)=5 \cos (5 t)+14 \sin (5 t) \\
& s=j 5 \\
& X=5-j 14 \\
& Y=\left(\frac{200}{(s+4)(s+6)}\right)_{s=j 5} \cdot(5-j 14) \\
& Y=-56.377-j 18.872 \\
& y(t)=-56.377 \cos (5 t)+18.872 \sin (5 t)
\end{aligned}
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$
$y(t)=83.333-56.377 \cos (5 t)+18.872 \sin (5 t)$
2) Determine the transfer function for the following filter. Assume

- m is your birth month (1..12) ($\mathrm{Ra}=10 \mathrm{k} . .120 \mathrm{k}$ Ohms)
- d is your birth date (1..31) $(\mathrm{C} 1=1 \mathrm{nf} . .31 \mathrm{nF})$

pole 1

$$
\left(\frac{1}{R C}\right)=\left(\frac{1}{1 k \cdot 14 n F}\right)=71,428
$$

pole 2

$$
\left(\frac{1}{R C}\right)=\left(\frac{1}{10 k \cdot 60 n F}\right)=1667
$$

pole 3

$$
\left(\frac{1}{R C}\right)=\left(\frac{1}{100 k \cdot 86 n F}\right)=116.3
$$

DC gain

$$
1+\frac{R_{2}}{R_{1}}=1.50
$$

So

$$
Y=\left(\frac{71428}{s+71428}\right)\left(\frac{1667}{s+1667}\right)\left(\frac{116.3}{s+116.3}\right)(1.50) X
$$

3) Determine the transfer function for the following filter. Assume

- m is your birth month (1..12) ($\mathrm{Ra}=10 \mathrm{k} . .120 \mathrm{k}$ Ohms)
- d is your birth date (1..31) $(\mathrm{C} 1=1 . .31 \mathrm{nF})$

Note that this is an RC filter cascaded with an active low-pass filter
RC filter

$$
\begin{aligned}
& \left(\frac{1}{R C}\right)=\left(\frac{1}{1 k \cdot 14 n F}\right)=71,428 \\
& W=\left(\frac{71429}{s+71428}\right) X
\end{aligned}
$$

Active Filter

$$
\begin{aligned}
& \left(\frac{1}{R C}\right)=\left(\frac{1}{10 k \cdot 60 n F}\right)=1667 \\
& k=1+\frac{R_{2}}{R_{1}}=1.5 \\
& 3-k=2 \cos \theta \\
& \theta=41.4^{0} \\
& Y=\left(\frac{1.5 \cdot 1667^{2}}{\left(s+1667 \angle \pm 41.4^{0}\right)}\right) W
\end{aligned}
$$

The total filter is then

$$
Y=\left(\frac{1.5 \cdot 1667^{2}}{\left(s+1667 \angle \pm 41.4^{0}\right)}\right)\left(\frac{71429}{s+71429}\right) X
$$

4) Give the transfer function for a filter which meets the following requirements

- $0.9<$ gain < 1.1 for frequencies below $30 \mathrm{rad} / \mathrm{sec}$
- gain <0.2 for frequencies above $50 \mathrm{rad} / \mathrm{sec}$

The number of poles needed is

$$
\begin{aligned}
& \left(\frac{30}{50}\right)^{n}<0.2 \\
& n>3.151
\end{aligned}
$$

Let $\mathrm{n}=4$.

Assume a 4th-order Chebychev filter
Assume the corner is $30 \mathrm{rad} / \mathrm{sec}$

A 4th-order Chebychev filter with a corner at $1 \mathrm{rad} / \mathrm{sec}$ (from lecture notes) is

$$
G(s)=\left(\frac{0.72^{2} \cdot 1.11^{2}}{\left(s+0.72 \angle \pm 38.5^{0}\right)\left(s+1.11 \angle \pm 77.8^{0}\right)}\right)
$$

A 4th-order Chebychev filter with a corner at $30 \mathrm{rad} / \mathrm{sec}$ is then

$$
G(s)=\left(\frac{21.6^{2} \cdot 33.3^{2}}{\left(s+21.6 \angle \pm 38.5^{0}\right)\left(s+33.3 \angle \pm 77.8^{0}\right)}\right)
$$

5) Give the Matlab code for an m-file you would use to have Matlab's fminsearch() design a filter with the following gain vs. frequency

$$
G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right)
$$

The m-file should

- Receive parameters $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
- Compute G(jw)
- Return the sum squared error between $\mathrm{G}(\mathrm{jw})$ and the graph below


```
function [ J ] = cost_problem5( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    f = z(6);
    w = [0:0.1:10]';
    s = j*w;
    Gideal = 0.8*(w<2) + 0.2*(w>=2).*(w<4) + 0.6*(w>=4).*(w<7);
    G = a*(s.^2 + b) ./ ( (s.^2 + c*s + d).*(s.^2 + e*s + f) );
    e = abs(Gideal) - abs(G);
    J = sum(e .^ 2);
    plot(w,abs(Gideal),'r',w,abs(G),'b');
    ylim([0,1.2]);
    pause(0.01);
end
```

6) What is the transfer function for the following analog computer?

Assume

- R1 = your birth month (1..12) k Ohms
- $\mathrm{R} 2=$ your birth data $(1.31) \mathrm{k}$ Ohms

These are two summing integrators

$$
\begin{aligned}
& X=-\left(\frac{1}{s}\right)\left(\left(\frac{1}{1 \mu F \cdot 100 k}\right) U+\left(\frac{1}{1 \mu F \cdot 14 k}\right)(-Y)+\left(\frac{1}{1 \mu F \cdot 5 k}\right) X\right) \\
& -s X=10 U-71.43 Y+200 X \\
& Y=-\left(\frac{1}{s}\right) X \\
& -s Y=X \\
& -s(-s Y)=10 U-71.43 Y+200(-s Y) \\
& s^{2} Y+200 s Y+71.43 Y=10 U \\
& Y=\left(\frac{10}{s^{2}+200 s+71.43}\right) U
\end{aligned}
$$

