Filters

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{200}{(s+4)(s+6)}\right) X
$$

Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=10+5 \cos (m t)+d \sin (m t)
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

2) Determine the transfer function for the following filter. Assume

- m is your birth month (1..12) ($\mathrm{Ra}=10 \mathrm{k} . .120 \mathrm{k}$ Ohms)
- d is your birth date (1..31) $(\mathrm{C} 1=1 \mathrm{nf} . .31 \mathrm{nF})$

3) Determine the transfer function for the following filter. Assume

- m is your birth month (1..12) $(\mathrm{Ra}=10 \mathrm{k} . .120 \mathrm{k}$ Ohms)
- d is your birth date $(1 . .31)(\mathrm{C} 1=1 . .31 \mathrm{nF})$

4) Give the transfer function for a filter which meets the following requirements

- $0.9<$ gain < 1.1 for frequencies below $30 \mathrm{rad} / \mathrm{sec}$
- gain <0.2 for frequencies above $50 \mathrm{rad} / \mathrm{sec}$

5) Give the Matlab code for an m-file you would use to have Matlab's fminsearch() design a filter with the following gain vs. frequency

$$
G(s)=\left(\frac{a\left(s^{2}+b\right)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right)
$$

The m-file should

- Receive parameters $\{a, b, c, d, e, f, g\}$
- Compute G(jw)
- Return the sum squared error between $G(j w)$ and the graph below

6) What is the transfer function for the following analog computer?

Assume

- R1 = your birth month (1..12) k Ohms
- $\mathrm{R} 2=$ your birth data (1..31) k Ohms

