ECE 321 - Final Exam - Name

Spring 2022

1. OpAmp Circuits: Determine y as a function of A, B, C, and D. Assume

- Ideal op-amps
- R $900+100 *$ (your birth month) + (your birth day).

R	$\mathrm{Y}=\mathrm{aA}+\mathrm{bB}+\mathrm{cC}+\mathrm{dD}$
$900+100^{*} \mathrm{mo}+$ day	
$\mathbf{1 4 4} \mathbf{4}$	

$$
\begin{aligned}
& W=-10 A-5 B \\
& X=2(W-C) \\
& Y=5\left(\frac{5 X+D}{6}\right)
\end{aligned}
$$

net

$$
Y=\left(\frac{5}{6}\right) D-\left(\frac{50}{6}\right) C-\left(\frac{100}{6}\right) A-\left(\frac{50}{6}\right) B
$$

2. Push-Pull: Determine the voltages and currents for the following push-pull amplifier. Assume

- $\mathrm{R}=1100+100^{*}$ (birth month) + (birth day).
- $\mid \mathrm{Vce} \mathrm{I}=0.7 \mathrm{~V}$ (ideal silicon diodes)
- $\beta=30$

R $900+100^{\circ} \mathrm{m}+$ day	V 1	V 2	V 3	I 4	I
1414	$\mathbf{4 V}$	$\mathbf{8 . 2 4 2 V}$	$\mathbf{7 . 5 4 2 V}$	$\mathbf{3 0 . 4 m A}$	$\mathbf{9 4 3 m A}$

3. Instrumentation Amplifier: Assume an RTD has the temperature - resistance relationship of

$$
R_{t}=2000 \cdot(1+0.0043 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- +15 V at +150 C , and
- -5 V at -50 C

Assume

- $\mathrm{R}=900+100^{*}($ your birth month $)+$ (your birth date)

-50C
- $\mathrm{Rt}=1570$ Ohms
- $\mathrm{Vx}=5.261 \mathrm{~V}$
- $\mathrm{Vy}=-5 \mathrm{~V}$
$+150 \mathrm{C}$
- $\mathrm{Rt}=3290$ Ohms
- $\mathrm{Vx}=6.994 \mathrm{~V}$
- $\mathrm{Vy}=+10 \mathrm{~V}$

Y goes up as X goes up. Connect to the + input
The gain needed is

$$
\text { gain }=\left(\frac{+15 V-(-5 V)}{6.994 V-5.261 V}\right)=11.54
$$

The offset needed comes from

$$
\begin{aligned}
& Y=+15 V=11.543(6.994 V-B) \\
& B=5.695 V
\end{aligned}
$$

4. Filters: Let

- R $900+100^{*}$ (your birth month) + (your birth day). May 14th would give $\mathrm{R}=1614$ Ohms Find the transfer function from X to Y

R	
$900+100^{*} \mathrm{mo}+$ day	Transfer Function $\mathrm{Y}=\mathrm{G}(\mathrm{s}){ }^{*} \mathrm{X}$
$\mathbf{1 4 1 4}$	

Stage 1: Low-pass filter with real poles

$$
\begin{aligned}
& p_{1}=\left(\frac{1}{R \cdot 1 \mu F}\right)=707.2 \\
& p_{2}=\left(\frac{1}{50 k \cdot 0.1 \mu F}\right)=200 \\
& k=1+\left(\frac{10 k}{R}\right)=8.072 \\
& G_{1}=\left(\frac{707.2}{s+707.2}\right)\left(\frac{200}{s+200}\right)
\end{aligned}
$$

Stage 2: Low-pass filter with complex poles

$$
\begin{aligned}
& p=\left(\frac{1}{R \cdot 0.1 i F}\right)=7072 \\
& k=1+\frac{R}{2 k}=1.707 \\
& 3-k=2 \cos \theta \\
& \theta=49.7^{0} \\
& G_{2}=\left(\frac{1.707 \cdot 7072^{2}}{s+7072 \angle \pm 49.7^{0}}\right)
\end{aligned}
$$

The total transfer function is then G1 * G2
5. CE Amplifiers (DC design): Determine R1 and R2 so that

- The Q-point is stabilized fpr variations in β, and
- $V c e=3.0 \mathrm{~V}$

Assume

- $\operatorname{Re}=900+100^{*}$ (your birth month) + (your birth date)
- $\beta=30$
- \mid Vbe $\mid=0.7 \mathrm{~V}$ (ideal silicon diode)

Re $900+100^{*} \mathrm{mo}+$ day	R 1	R 2	Vb	Ic
1414	5119	18.30 K	2.623 V	1.206 mA

To stabilize the Q-point

$$
R_{b} \ll(1+\beta) R_{e}=43.83 k
$$

Let $\mathrm{Rb}=4 \mathrm{k}$

$$
\begin{aligned}
& V_{b}=R_{e}\left(I_{b}+I_{c}\right)+0.7+R_{b} I_{b}=2.623 V \\
& R_{1}=\left(\frac{12 V}{2.623 V}\right) 4 k=18.30 k \\
& R_{2}=5119 \Omega
\end{aligned}
$$

6. 2-Port model: Determine the 2-port parameters for the following circuit. Assume

- $\mathrm{R}=900+100^{*}($ your birth month $)+$ (your birth date) Ohms

R $900+100^{*} \mathrm{mo}+$ day	Rin	Ai	Rout	Ao
1414	2586	0.5857	57.84	0.4062

Rin: Short Vout

$$
R_{i n}=2 k+R \| 1 k=2586 \Omega
$$

Ai: Apply 1V to Vout, find Vin

$$
A_{i}=\left(\frac{1414}{1414+1000}\right)=0.5857
$$

Rout: Short Vin, Apply 1V to Vout and find the current

$$
\begin{aligned}
& \left(\frac{X}{2 k}\right)+\left(\frac{X}{R}\right)+\left(\frac{X-1}{1 k}\right)=0 \\
& X=0.4531 V \\
& I=\left(\frac{1 V}{3 k \Omega}\right)+\left(\frac{1 V-0.4531 V}{1 k}\right)+30\left(\frac{1-0.4531}{1 k}\right)=17.29 \mathrm{~mA} \\
& R_{\text {out }}=\frac{1 V}{17.29 m A}=57.84 \Omega
\end{aligned}
$$

Ao: Apply 1V to Vin, find Vout

$$
\begin{aligned}
& \left(\frac{X-1}{2 k}\right)+\left(\frac{X}{R}\right)+\left(\frac{X-Y}{1 k}\right)=0 \\
& \left(\frac{Y-X}{1 k}\right)+30\left(\frac{Y-X}{1 k}\right)+\left(\frac{Y}{3 k}\right)=0
\end{aligned}
$$

Solving 2 equations for 2 unknowns

$$
\begin{aligned}
\mathrm{X} & =0.4106 \\
\mathrm{Y} & =0.4062=\mathrm{Ao}
\end{aligned}
$$

7. 2-Port model (experimental): Determine the 2-port parameters for an unknown ciruit (shown in blue) given the following experimental data:

Case 1:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=0$ Ohms
- $\mathrm{Rb}=$ infinity (open)
- Vout $=96 \mathrm{mV}$ @ 1 kHz

Case 2:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=\mathrm{R}$ Ohms
- $\mathrm{Rb}=$ infinity (open)
- Vout $=63 \mathrm{mV} @ 1 \mathrm{kHz}$

Case 3:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=0$ Ohms
- $\mathrm{Rb}=\mathrm{R}$ Ohms
- Vout $=28 \mathrm{mV} @ 1 \mathrm{kHz}$

Assume

- $\mathrm{R}=900+100 *$ (your birth month) + (your birth date) Ohms
- $\mathrm{Ai}=0$

R $900+100^{*} \mathrm{mo}+$ day	Rin	Ai	Rout	Ao
1414	2699	0	3434	96

Ao: Case 1:

$$
A_{o}=\left(\frac{96 m V}{1 m V}\right)=96
$$

Rin: Case 2

$$
R_{i n}=\left(\frac{63 m V}{96 m V-63 m V}\right) 1414 \Omega=2699 \Omega
$$

Rout: Case 3

$$
R_{\text {out }}=\left(\frac{96 m V-28 m V}{28 m V}\right) 1414 \Omega=3434 \Omega
$$

