Spring 2022

1. OpAmp Circuits: Determine y as a function of A, B, C, and D. Assume

- Ideal op-amps
- R $900+100^{*}$ (your birth month) + (your birth day).

R	$\mathrm{Y}=\mathrm{aA}+\mathrm{bB}+\mathrm{cC}+\mathrm{dD}$
$900+100^{*} \mathrm{mo}+$ day	

2. Push-Pull: Determine the voltages and currents for the following push-pull amplifier. Assume

- $R=1100+100 *($ birth month $)+($ birth day $)$. May 14th gives $R=1614$ Ohms
- $\mid \mathrm{Vce} \mathrm{I}=0.7 \mathrm{~V}$ (ideal silicon diodes)
- $\beta=30$

R $900+100^{*} \mathrm{mo}+$ day	V1	V2	V3	I4	I5

3. Instrumentation Amplifier: Assume an RTD has the temperature - resistance relationship of

$$
R_{t}=2000 \cdot(1+0.0043 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- +15 V at +150 C , and
- -5 V at -50 C

Assume

- $\mathrm{R}=900+100 *$ (your birth month) + (your birth date)

4. Filters: Let

- R $900+100^{*}$ (your birth month) + (your birth day). May 14th would give $\mathrm{R}=1614$ Ohms Find the transfer function from X to Y

R	Transfer Function
$Y=G(s){ }^{*} X$	
$900+100^{*}$ mo + day	

5. CE Amplifiers (DC design): Determine R1 and R2 so that

- The Q-point is stabilized for variations in β, and
- Vce $=3.0 \mathrm{~V}$

Assume

- $\operatorname{Re}=900+100^{*}($ your birth month $)+($ your birth date $)$
- $\beta=30$
- $\quad|\mathrm{Vbe}|=0.7 \mathrm{~V}$ (ideal silicon diode)

Re $900+100^{*} \mathrm{mo}+$ day	R 1	R 2	Vb	Ic

6. 2-Port model: Determine the 2-port parameters for the following circuit. Assume

- $\mathrm{R}=900+100 *$ (your birth month) + (your birth date) Ohms

R	Rin	Ai	Rout	Ao
$900+100^{*}$ mo + day				

7. 2-Port model (experimental): Determine the 2-port parameters for an unknown ciruit (shown in blue) given the following experimental data:

Case 1:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=0$ Ohms
- $\mathrm{Rb}=$ infinity (open)
- Vout $=96 \mathrm{mV}$ @ 1 kHz

Case 2:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=\mathrm{R}$ Ohms
- $\mathrm{Rb}=$ infinity (open)
- Vout $=63 \mathrm{mV} @ 1 \mathrm{kHz}$

Case 3:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{Ra}=0$ Ohms
- $\mathrm{Rb}=\mathrm{R}$ Ohms
- Vout $=28 \mathrm{mV} @ 1 \mathrm{kHz}$

Assume

- $\mathrm{R}=900+100 *$ (your birth month) + (your birth date) Ohms
- $\mathrm{Ai}=0$

R	Rin	Ai	Rout	Ao
$900+100^{*}$ mo + day		$\mathbf{0}$		

