ECE 321 - Homework \#3

Active Filters. Due Wednesday, April 20th
Please make the subject "ECE $321 \mathrm{HW} \# 3$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Filters

1) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{40}{(s+2)(s+7)}\right) X
$$

a) What is the differential equation relating x and y ?

Cross multiply

$$
\left(s^{2}+9 s+14\right) Y=40 X
$$

'sy' means 'the derivative of y^{\prime}

$$
\frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+14 y=40 x
$$

or using prime notation where y^{\prime} means dy/dt

$$
y^{\prime \prime}+9 y^{\prime}+14 y=40 x
$$

b) Determine $y(t)$ assuming

$$
x(t)=4+5 \cos (7 t)+6 \sin (7 t)
$$

Treat this as two problems ($\mathrm{x}(\mathrm{t})$ contains two frequencies)
(i) $\quad x(t)=4$

$$
s=0
$$

$$
\begin{equation*}
Y=\left(\frac{40}{(s+2)(s+7)}\right)_{s=0} \tag{4}
\end{equation*}
$$

$Y=11.429$
(ii)

$$
\begin{aligned}
& x(t)=5 \cos (7 t)+6 \sin (7 t) \\
& X=5-j 6 \\
& s=j 7 \\
& Y=\left(\frac{40}{(s+2)(s+7)}\right)_{s=j 7} \cdot(5-j 6) \\
& Y=-4.259-j 0.809 \\
& y(t)=-4.259 \cos (7 t)+0.809 \sin (7 t)
\end{aligned}
$$

The total answer is the sum of the two

$$
y(t)=11.429-4.259 \cos (7 t)+0.809 \sin (7 t)
$$

Filter Design

2) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{500}{(s+2)(s+6)(s+12)}\right) X
$$

Rewrite as

$$
Y=\left(\frac{2}{s+2}\right)\left(\frac{6}{s+6}\right)\left(\frac{12}{s+12}\right)(3.472) X
$$

Implement as three RC filters along with a non-inverting amplifier

3) Give an op-amp circuit to implement the following filter

$$
Y=\left(\frac{500}{\left(s^{2}+2 s+10\right)\left(s^{2}+4 s+20\right)}\right) X
$$

Rewrite this as

$$
\begin{aligned}
& Y=\left(\frac{500}{(s+1 \pm 33)(s+2 \pm j 4)}\right) X \\
& Y=\left(\frac{-}{s+3.162 \angle \pm 71.57^{0}}\right)\left(\frac{-}{\bar{s}+4.472 \angle \pm 63.43^{0}}\right) X
\end{aligned}
$$

Implement this in two stages

Stage 1:

$$
\begin{aligned}
& G_{1}(s)=\left(\frac{k}{s+3.162 \angle \pm 71.57^{0}}\right) \\
& \frac{1}{R C}=3.162
\end{aligned}
$$

Let $\mathrm{R}=100 \mathrm{k} . \mathrm{C}=3.163 \mathrm{uF}$

$$
\begin{aligned}
& 3-k=2 \cos \left(71.57^{0}\right) \\
& k=2.368
\end{aligned}
$$

Stage 2:

$$
\begin{aligned}
& G_{2}(s)=\left(\frac{-}{\bar{s}+4.472 \angle \pm 63.43^{0}}\right) \\
& \frac{1}{R C}=4.472
\end{aligned}
$$

Let $\mathrm{R}=100 \mathrm{k}$. $\mathrm{C}=2.236 \mathrm{uF}$

$$
\begin{aligned}
& 3-k=2 \cos \left(63.43^{0}\right) \\
& k=2.105
\end{aligned}
$$

The resulting DC gain is

$$
D C=2.368 \cdot 2.105=4.985
$$

The DC gain should be 2.50

$$
\left(\frac{500}{\left(s^{2}+2 s+10\right)\left(s^{2}+4 s+20\right)}\right)_{s=0}=2.50
$$

meaning the DC gain is 1.994 x too much. Call the output 1.994 y

4) Give the transfer function of a filter with the following gain vs. frequency

The DC gain is zero.
There must be a zero at $\mathrm{s}=0$

There is a resonance at $5 \mathrm{rad} / \mathrm{sec}$
$\operatorname{imag}($ pole \#1 $)=$ resonance frequency $=5 \mathrm{rad} / \mathrm{sec}$
$2 * \operatorname{real}($ pole \#1 $)=$ bandwidth $=1 \mathrm{rad} / \mathrm{sec}$
$\operatorname{real}($ pole \#1 $)=0.5$
$p_{1}=-0.5 \pm j 5$

There is a resonance at $14.8 \mathrm{rad} / \mathrm{sec}$
$\operatorname{imag}($ pole \#2 $)=$ resonance frequency $=14.8 \mathrm{rad} / \mathrm{sec}$
$2 *$ real $($ pole $\# 2)=$ bandwidth $=2 \mathrm{rad} / \mathrm{sec}$
real $($ pole \#2 $)=1 \mathrm{rad} / \mathrm{sec}$
$p_{2}=-1 \pm j 14.8$

So

$$
G(s) \approx\left(\frac{k s}{(s+0.5 \pm j 5)(s+1 \pm j 14.8)}\right)
$$

To find k , match the gain at some frequency. Using Matlab, make the maximum gain equal to 5

```
>> w = [0:0.01:20]';
>> s = j*w;
>> p1 = -0.5 + j*5;
>> p2 = -0.5 - j*5;
>> p3 = -1 + j*14.8;
>> p4 = -1 - j*14.8;
>>
>> G = s ./ ( (s-p1).*(s-p2).*(s-p3).*(s-p4) );
>> k = 5 / max(abs(G))
k =
        974.9369
>> plot(w,abs(k*G))
```

and

$$
G(s) \approx\left(\frac{974.94 s}{(s+0.5 \pm j 5)(s+1 \pm j 14.8)}\right)
$$

Filter Design using fminsearch()

5) Design a filter of the form

$$
Y=\left(\frac{a c e}{(s+a)\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right) X
$$

to give a gain vs. frequency as close to the following plot as possible over the range of $(0,10) \mathrm{rad} / \mathrm{sec}$.
Plot your filter's actual frequency response vs. it's ideal response (red line).

Step 1: Create an m-file where you

- Guess \{a,b,c,d,e\}
- It computes G(jw)
- It compares it to the desired $\mathrm{G}(\mathrm{jw})$, and
- Returns the sum-sqared error

```
function [ J ] = costf( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d=z(4);
    e = z(5);
    W = [0:0.01:10]';
    S = j*W;
    Gideal = (1)* (w<3) + (1.8-0.0.267*w).* (w>=3).* (w<6);
    G = a* c*e ./ ( (s+a).* (s.^2 + b*s + c).** (s.^2 + d d*s + e ) );
    G = abs(G);
    E = abs(Gideal) - abs(G);
    J = sum(E.^ 2);
    plot(w,Gideal,w, abs(G), 'r');
    Ylim([0,1.4]);
    pause(0.01);
end
```

Optimizing using fminsearch
$>[\mathrm{Z}, \mathrm{e}]=$ fminsearch('costF', $[1,2,3,4,5])$
$\begin{array}{cccccc} & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{c} & \mathrm{d} \\ Z & 1.8061 & 2.4968 & 9.5605 & 1.7538 & 24.9067\end{array}$
$\mathrm{e}=1.4611$
meaning

$$
G(s)=\left(\frac{1.8061 \cdot 9.5605 \cdot 24.9067}{(s+1.8061)\left(s^{2}+2.4968 s+9.5605\right)\left(s^{2}+1.7538 s+24.9067\right)}\right)
$$

or

$$
G(s)=\left(\frac{430.069}{(s+1.8061)\left(s^{2}+2.4968 s+9.5605\right)\left(s^{2}+1.7538 s+24.9067\right)}\right)
$$

6) Design circuit to implement the filter you designed in problem \#5

$$
G(s)=\left(\frac{430.069}{(s+1.8061)\left(s^{2}+2.4968 s+9.5605\right)\left(s^{2}+1.7538 s+24.9067\right)}\right)
$$

Write this as

$$
\begin{aligned}
& G(s)=\left(\frac{1.8061}{(s+1.8061)}\right)\left(\frac{9.5605}{s^{2}+2.4968 s+9.5605}\right)\left(\frac{24.9067}{s^{2}+1.7538 s+24.9067}\right) \\
& G(s)=\left(\frac{1.8061}{(s+1.8061)}\right)\left(\frac{9.5605}{s+3.092 \angle \pm 66.19^{0}}\right)\left(\frac{24.9067}{s+4.99 \angle 79.88^{0}}\right)
\end{aligned}
$$

Implement as

- An RC filter
- An active low-pass filer, and
- An active low-pass filter

Stage 1

$$
\frac{1}{R C}=1.8061
$$

Let $\mathrm{R}=10 \mathrm{k} . \mathrm{C}=55.36 \mathrm{uF}$

Stage 2

$$
\frac{1}{R C}=3.092
$$

Let $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=3.234 \mathrm{uF}$

$$
\begin{aligned}
& 3-k=2 \cos \left(66.19^{0}\right) \\
& k=2.193
\end{aligned}
$$

Stage 3

$$
\frac{1}{R C}=4.99
$$

Let $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=2.004 \mathrm{uF}$

$$
\begin{aligned}
& 3-k=2 \cos \left(79.88^{0}\right) \\
& k=2.649
\end{aligned}
$$

7) Check your filter using CircuitLab

