ECE 321 - Homework \#4

Butterworth \& Chebychev filters, Analog Computers. Due Monday, April 26th
Please make the subject "ECE $321 \mathrm{HW} \# 4$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Analog Computers

1) Design an analog computer to implement

$$
Y=\left(\frac{10 s+15}{s^{3}+7 s^{2}+2 s+20}\right) U
$$

Rewrite as

$$
\begin{aligned}
& X=\left(\frac{1}{s^{3}+7 s^{2}+2 s+20}\right) U \\
& Y=(10 s+15) X
\end{aligned}
$$

Draw as an analog computer

Replace each amplifier with its op-amp circuit

Butterworth and Chebychev Filters

2) Requirements. Specify

- The frequencies that should be passed $(0.9<$ gain $<1.1)$,
- The frequencies that should be rejectd (gain <0.2)

Option \#1: Low Pass Filter

- $0.9<$ gain < 1.1 for frequencies between 20 Hz and 250 Hz
- gain <0.2 for frequencies above 500 Hz

3) Filter design:

- Give the transfer function for a filter which meets your requirements.
- Plot the gain vs. frequency of your filter.

The number of poles needed are

$$
\left(\frac{250 \mathrm{~Hz}}{500 \mathrm{~Hz}}\right)^{n}<0.2
$$

$$
n>2.32
$$

Let $\mathrm{n}=3$. Assume a Chebychev fitler. For a corner at $1 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{1}{(s+0.85)\left(s+1.21 \angle \pm 69.5^{0}\right)}\right)
$$

For a corner at 238 Hz (guess)

$$
G(s)=\left(\frac{k}{(s+1275)\left(s+1815 \angle \pm 69.5^{0}\right)}\right)
$$

Checking in Matlab if this meets the requirements

```
>> f = [0:10:1000]';
>> w = 2*pi*f;
>> s = j*W;
>> p1 = 1500 * 0.85;
>> p2 = 1500 * 1.21 * exp(j*69.5*pi/180);
>> p3 = conj(p2);
>> G = p1*p2*p3 ./ ( (s+p1).*(s+p2).*(s+p3) );
>> plot(f,abs(G),[250,500],[0.9,0.2],'rx');
```


That works. To build this filter, do it in three stages

$$
\left(\frac{1}{R C}\right)=1275
$$

$\mathrm{R}=10 \mathrm{k}, \mathrm{C}=78 \mathrm{nF}$

$$
\left(\frac{1}{R C}\right)=1815
$$

$$
\mathrm{R}=100 \mathrm{k}, \mathrm{C}=5.5 \mathrm{nF}
$$

$$
3-k=2 \cos \left(69.5^{0}\right)
$$

$$
k=2.30
$$

4) Simulation: Simulate your filter in CircuitLab to verify that it meets your requirements

- $0.9<$ gain <1.1 in the pass-band region, and
- gain <0.2 in the band-reject region

5) Hardware: Build your filter and verity it meets your requirements.

- $0.9<$ gain < 1.1 in the pass-band region, and
- gain <0.2 in the band-reject region

Hz	100 Hz	250 Hz	500 Hz	1000 Hz
Requirement	$1.1<$ gain <0.9	$1.1<$ gain <0.9	gain <0.2	gain <0.2
Gain (calculated)	0.9825	0.9606	0.1610	0.0177
Gain (CircuitLab)	0.9878	0.8693	0.1533	0.01813
Gain (measured)				

(all gains relative to the DC gain (2.300))
6) Demo: Demonstrate your pre-amp - filter - power amp circuit.

