## ECE 321 - Homework \#5

DC Analsis of Transtor Amplfiers, 2-Ports, CE Amplifiers. Due Monday, May 2nd
Please make the subject "ECE $321 \mathrm{HW} \mathrm{\# 4}$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine the Q-point for the following transistor circuit. Assume C 's are large and assume 3904 transistors:

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=200$

$V_{b}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=2.667 \mathrm{~V}$
$R_{b}=R_{1} \| R_{2}=155.6 \mathrm{k} \Omega$
$I_{b}=\left(\frac{V_{b}-0.7 V}{R_{b}+(1+\beta) R_{e}}\right)=3.527 \mu A$
$I_{c}=200 I_{b}=705.5 \mu \mathrm{~A}$
$V_{e}=R_{e}\left(I_{b}+I_{c}\right)=1.418 \mathrm{~V}$
$V_{c}=12 V-I_{c} R_{c}=8.473 \mathrm{~V}$

2) Modify this circuit so that

- The Q-point is stabilized for variations in, and
- The Q-point is Vce $=5.0 \mathrm{~V}$


3) Draw the small-signal model for the circuit of problem \#2 connected as a common emitter amplifier (below). From this, determine the 2-port model

Model the diode as

$$
r_{f}=\left(\frac{n \cdot 0.026}{I_{b}}\right)=\left(\frac{0.026}{4.993 \mu A}\right)=5207 \Omega
$$

where n depends upon the diode

- $\mathrm{n}=1 . .2$ in general
- $\mathrm{n}=1.45$ for 1 N 4004 diodes
- $\mathrm{n}=1.00$ for 3904 NPN transistors in CircuitLab (?)


$$
R_{\text {in }}=85.5 \mathrm{k}\|26.1 \mathrm{k}\| 5207=4131 \Omega
$$

$$
A_{i}=0
$$

$$
R_{\text {out }}=5 \mathrm{k}
$$

$$
A_{0}=-\left(\frac{200 \cdot 5000}{5207}\right)=-192
$$

5000

4) Simulate this circuit in CircuitLab. Verify each of the 2 -port parameters at 1 kHz

- Rin
- Rout
- Ao


Ao $=188.2$

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{R} 8=0$
- $\mathrm{R} 5=10 \mathrm{M}$
- Vout measured as a 188.2 mVp sine wave



## Rout

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{R} 8=0$
- $\mathrm{R} 5=5 \mathrm{k}$
- Vout measured at 96.01 mV

$$
96.01 m V=\left(\frac{5 k}{5 k+R_{\text {out }}}\right) \cdot 188.2 m V
$$

$R_{\text {out }}=\left(\frac{188.2 m V-96.01 m V}{96.01 m V}\right) 5000 \Omega$
$R_{\text {out }}=4801 \Omega$


## Rin

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R8=4131 Ohms
- $\mathrm{R} 5=10 \mathrm{M}$
- Vout measured as 95.22 mV

$$
\begin{aligned}
& 95.22 m V=\left(\frac{R_{i n}}{R_{i n}+4131}\right) 188.2 m V \\
& R_{\text {in }}=\left(\frac{95.22 m V}{188.2 m V-95.22 m V}\right) 4131 \Omega \\
& R_{\text {in }}=4230 \Omega
\end{aligned}
$$


5) Remove Ce. Now draw the small-signal model for the circuit of problem \#2. From this, determine the 2-port model for the Common Emitter amplifier


Rin: Apply 1V to Vin. Compute the current

$$
\begin{aligned}
& I=\frac{1 V}{85.5 k}+\frac{1 V}{26.1 k}+\frac{1 V}{5207+2 k(\beta+1)}=52.47 \mu \mathrm{~A} \\
& R_{i n}=\frac{1 V}{52.47 \mu \mathrm{~A}}=19.06 \mathrm{k} \Omega
\end{aligned}
$$

Ain $=0$
Rout $=5 \mathrm{k}$
short Vin and $\mathrm{Ib}=0$
Aout: Apply 1V to Vin

$$
\begin{aligned}
& I_{b}=\left(\frac{1 V}{5207+2 k(\beta+1)}\right)=2.456 \mu A \\
& I_{c}=200 I_{b}=491.2 \mu A \\
& V_{\text {out }}=-5 k \cdot I_{c}=-2.456
\end{aligned}
$$


6) Simulate this circuit in CircuitLab. Verify each of the 2 -port parameters at 1 kHz

Same simulation as before but with $\mathrm{Ce}=1 \mathrm{pF}$ (essentially not there)
Ao

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{R} 8=0$
- $\mathrm{R} 5=10 \mathrm{M}$
- Vout measured as a 2.452 mVp sine wave
- $\mathrm{Ao}=2.452$ (vs. 2.456 computed)


## Rout

- Vin = 1mV @ 1 kHz
- $\mathrm{R} 8=0$
- $\mathrm{R} 5=5 \mathrm{k}$
- Vout measured at 1.228 mV

$$
\begin{aligned}
& R_{\text {out }}=\left(\frac{2.452-1.228}{1.228}\right) 5000 \Omega \\
& R_{\text {out }}=4984 \Omega(\text { vs. } 5 \mathrm{k} \text { computed })
\end{aligned}
$$

Rin

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R8 = 20k Ohms
- $\mathrm{R} 5=10 \mathrm{M}$

Vout measured as 1.195 mV

$$
\begin{aligned}
& R_{\text {in }}=\left(\frac{1.195}{2.452-1.195}\right) 20 \mathrm{k} \Omega \\
& R_{\text {in }}=19.01 \mathrm{k} \Omega \quad(\text { vs. } 19.06 \mathrm{k} \text { computed })
\end{aligned}
$$



