ECE 321 - Final Exam - Name

1. OpAmp Circuits: Determine y as a function of A, B, C, and D. Assume

- Ideal op-amps
- R $800+100^{*}$ (your birth month) + (your birth day).

R $800+100^{*} \mathrm{mo}+$ day	$\mathrm{Y}=\mathrm{aA}+\mathrm{bB}+\mathrm{cC}+\mathrm{dD}$
1314	$Y=-11.41 A-15.00 B-6.81 C-5.18 D$

$$
\begin{aligned}
& W=-\left(\frac{5 k}{1314}\right) A-\left(\frac{5 k}{1 k}\right) B \\
& X=\left(1+\frac{3 k}{1 k}\right)\left(\left(\frac{1314}{1 k+1314}\right) C+\left(\frac{1 k}{1314+1 k}\right) D\right) \\
& Y=6(W-X)
\end{aligned}
$$

2. Push-Pull: Determine the voltages and currents for the following push-pull amplifier when $X=-4 \mathrm{~V}$. Assume

- $\mathrm{R}=800+100^{*}$ (birth month) + (birth day).
- $\mid \mathrm{Vce} \mathrm{I}=0.7 \mathrm{~V}$ (ideal silicon diodes)
- $\beta=30$

R $800+100^{*} \mathrm{~m}+$ day	V 1	V 2	V 3	I 4	I
$\mathbf{1 3 1 4}$	-9.9560	-9.2560	-4.000	$\mathbf{3 7 . 4 5 m A}$	$\mathbf{1 . 1 6 1 A}$

$$
\begin{aligned}
& V_{3}=-4 \mathrm{~V} \\
& V_{2}=\left(1+\frac{R}{1 k}\right) V_{3}=-9.256 \mathrm{~V} \\
& V_{1}=V_{2}-0.7=-9.9560 \mathrm{~V} \\
& I_{5}=\frac{V_{2}}{8}+\frac{V_{2}}{1 k+R}=1.161 \mathrm{~A} \\
& I_{4}=\frac{I_{5}}{\beta+1}=37.45 \mathrm{~mA}
\end{aligned}
$$

3. Instrumentation Amplifier: Assume an RTD has the temperature - resistance relationship of

$$
R_{x}=1000 \cdot(1+0.0043 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- +10 V at +40 C , and
- 0 V at 0 C

Assume

- $\mathrm{R}=800+100^{*}$ (your birth month) + (your birth date)

At 0C

$$
\begin{aligned}
& \mathrm{Rx}=1000 \\
& X=\left(\frac{R_{x}}{R_{x}+1314}\right) 10 V=4.321 V
\end{aligned}
$$

At 40C

$$
\begin{aligned}
& R_{x}=1172 \Omega \\
& X=\left(\frac{R_{x}}{R_{x}+1314}\right) 10 V=4.7144 \mathrm{~V}
\end{aligned}
$$

Offset $=4.321 \mathrm{~V}($ where $\mathrm{Y}=0)$
Connect to the + input (Y goes up as X goes up)

$$
\text { gain }=\left(\frac{10 V-0 V}{4.6714 V-4.321 V}\right)=25.45
$$

4. Filters: Let

- R $800+100^{*}$ (your birth month) + (your birth day).

Determine the poles and the DC gain

R $800+100^{*} \mathrm{mo}+$ day	Transfer Function $\mathrm{Y}=\mathrm{G}(\mathrm{s})^{*} \mathrm{X}$
$\mathbf{1 3 1 4}$	$\left(\frac{8.4621 \cdot 76.10 \cdot 38.05 \cdot 761.03^{2}}{(s+76.10)(s+38.05)\left(s+761.03 \angle \pm 51.72^{\circ}\right)}\right)$

pole 1:76.1035 $38.0518761 .0350 \quad 51.72168 .4621$

$$
\begin{aligned}
& \text { pole }=-\left(\frac{1}{R C}\right)=-\left(\frac{1}{1314 \cdot 10 \mu F}\right)=-76.103 \\
& \text { pole }=-\left(\frac{1}{R C}\right)=-\left(\frac{1}{1340 \cdot 2 \mu F}\right)=-38.0518 \\
& \text { pole } 3=-\left(\frac{1}{R C}\right)=-\left(\frac{1}{1314 \cdot 1 \mu F}\right)=-761.03 \\
& k=1+\frac{1 k}{R}=1.7610 \\
& 3-k=2 \cos \theta \\
& \theta=57.721^{0} \\
& D C=\left(1+\frac{5 k}{R}\right)\left(1+\frac{1 k}{R}\right)=8.4621
\end{aligned}
$$

5) Filter Analysis: Determine $y(t)$ given

$$
\begin{aligned}
& Y=\left(\frac{20 s}{s^{2}+2 s+100}\right) X \\
& x(t)=4+m \cos (10 t)+d \sin (10 t) \\
& x(t)=4+5 \cos (10 t)+14 \sin (10 t)
\end{aligned}
$$

where

- m is your birth month(1..12) and
- d is your birth date (1..31)

DC:

$$
\begin{align*}
& \mathrm{s}=0 \\
& \mathrm{X}=4 \\
& Y=\left(\frac{20 s}{s^{2}+2 s+100}\right)_{s=0} . \tag{4}\\
& Y=0
\end{align*}
$$

AC :

$$
\begin{aligned}
& \mathrm{s}=\mathrm{j} 10 \\
& \mathrm{X}=5-\mathrm{j} 14 \\
& Y=\left(\frac{20 s}{s^{2}+2 s+100}\right)_{s=j 10} \cdot(5-j 14) \\
& Y=50-j 140 \\
& y(t)=50 \cos (10 t)+140 \sin (10 t)
\end{aligned}
$$

$$
\text { real }=\text { cosine }, \text {-imag }=\text { sine }
$$

Total

$$
Y=0+50 \cos (10 t)+140 \sin (10 t)
$$

6. CE Amplifiers (DC analysis): Determine the Q-point for the following circuit. Assume

- $\mathrm{R} 2=800+100^{*}($ your birth month $)+($ your birth date $)$
- $\beta=30$
- $\quad \mid$ Vbe $\mid=0.7 \mathrm{~V}$ (ideal silicon diode)

R 2 $800+100^{*} \mathrm{mo}+$ day	Vb	Rb	Vce	Ic
$\mathbf{1 3 1 4}$	$\mathbf{2 . 1 5 5 9} \mathrm{V}$	$\mathbf{1 0 7 7 . 9}$ Ohms	8.8107 V	349.2 uA

$R_{b}=R_{1} \| R_{2}=1077.9 \Omega$
$V_{b}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=2.1559 \mathrm{~V}$
$I_{b}=\left(\frac{V_{b}-0.7}{R_{b}+(1+\beta) R_{e}}\right)=11.64 \mu \mathrm{~A}$
$I_{c}=\beta I_{b}=349.2 \mu \mathrm{~A}$
$V_{c e}=12-R_{c} I_{c}-R_{e}\left(I_{b}+I_{c}\right)=8.8107 \mathrm{~V}$
7. 2-Port model: Determine the 2-port parameters for the following circuit. Assume

- $\mathrm{R}=800+100^{*}($ your birth month $)+($ your birth date) Ohms

R $800+100^{*} \mathrm{mo}+$ day	Rin	Ai	Rout	Ao
1314	$\mathbf{9 6 2 . 6}$ Ohms	0.7326	$\mathbf{4 1 . 3 6}$ Ohms	0.9759

$\begin{array}{llll}0.9626 & 0.7326 & 41.3643 & 0.9759\end{array}$

Rin: Short Vout, measure the resistance at the input.

$$
R_{i n}=9 k\|6 k\| R=962.6 \Omega
$$

Ain: Apply 1V at Vout, measure Vin. By voltage division

$$
A_{\text {in }}=\left(\frac{9 k \| 6 k}{9 k| | 6 k+R}\right)=0.7326
$$

Rout: Short Vin. Apply 1V to Vout and compute the current draw

$$
\begin{aligned}
& I=\left(\frac{1}{3 k}\right)+\left(\frac{1}{4 k}\right)+\left(\frac{1}{R}\right)+30\left(\frac{1}{R}\right)=24.18 m A \\
& R_{\text {out }}=\frac{1 V}{24.18 m A}=41.36 \Omega
\end{aligned}
$$

Aout: Apply 1V to Vin, compute Vout. Do a voltage node equation at Vout

$$
\begin{aligned}
& \left(\frac{V_{o}-1}{R}\right)+\left(\frac{V_{o}}{4 k}\right)+30\left(\frac{V_{o}-1}{R}\right)+\left(\frac{V_{o}}{3 k}\right)=0 \\
& V_{o}=0.9759 \mathrm{~V}
\end{aligned}
$$

8. 2-Port model: Determine the 2-port parameters for a Common-Base amplifier cascaded with a Common Collector amplifier. Assume

- $\mathrm{R}=800+100^{*}($ your birth month $)+($ your birth date $)$ Ohms

R $800+100^{*} \mathrm{mo}+$ day	Rin	Ain	Rout	Aout
1314	50	0	$\mathbf{1 5 5 . 7 0}$ Ohms	$\mathbf{6 0 . 5 5}$

By inspection

$$
\begin{aligned}
& \operatorname{Rin}=50 \\
& \operatorname{Ain}=0
\end{aligned}
$$

Rout: Short V0, Apply 1V to V2. Compute the current draw

$$
\begin{aligned}
& V_{1}=\left(\frac{R}{R+1000}\right) 0.7 V=0.3975 \mathrm{~V} \\
& I=\left(\frac{1 V-0.9 \cdot 0.3975 \mathrm{~V}}{100 \Omega}\right)=6.423 \mathrm{~mA} \\
& R_{\text {out }}=\frac{1 V}{I}=155.7 \Omega
\end{aligned}
$$

