ECE 321 - Homework \#1

Op Amp Amplifiers, Push-Pull Amplifiers. Due Monday, April 3rd
Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

For all problems, assume you are using

- LM833 Op Amps (max current $=50 \mathrm{~mA})$
- 2 SC6144 transistors ($\beta=200$, 10A max, $\mid V b e l=0.7 \mathrm{~V}$), or
- TIP112 / TIP117 NPN and PNP power transistors (for a push-pull amplifier).
- $\beta=1000,3 \mathrm{~A}$ max, $\mathrm{IVbel}=1.4 \mathrm{~V}$

Amplfier:

1) Design a circuit to implement
a) $Y=+4 X$
b) $Y=-4 X$
c) $Y=12-4 X$

Mixer

2) Design a circuit to mix three signals together:

- $Y=6 A+3 B+7 C$

Push-Pull Amplifier with Crossover Distortion

3) For the circuit below, calculate the voltages and currents when

- $\mathrm{V} 1=+0 \mathrm{~V}$
- $\mathrm{V} 1=+1 \mathrm{~V}$
- $\mathrm{V} 1=+2 \mathrm{~V}$

4) Simulate in CircuitLab with

- V1 being a 4 Vpp sine wave at 1 kHz , or
- V0 being a 363 mV pp sine wave at 1 kHz (same result)

Problem 3-5: Amplifier with Crossover Distortion

Push-Pull Amplifier without Crossover Distortion

5) For the circuit below, calculate the voltages and currents when

- $\mathrm{V} 1=+0 \mathrm{~V}$
- $\mathrm{V} 1=+1 \mathrm{~V}$
- $\mathrm{V} 1=+2 \mathrm{~V}$

6) Simulate in CircuitLab with

- V1 being a 4 Vpp sine wave at 1 kHz , or
- V0 being a 363 mV pp sine wave at 1 kHz (same result)

Problem 5-6: Amplifier Withour Crossover Distortion

Lab
(over)

An LM386 is a 700 mW audio amplifier (essentially a push-pull anmplifier on a chip - provides better sound quality).

8-Ohm Speaker
7) Build the two circuits above on a breadboard using a 9 V battery (or any $6-12 \mathrm{VDC}$ power source)

- Creating a 4.5 V reference signal (acts as circuit ground) capable of sourcing / sinking up to 25 mA
- A gain of 20 audio amplifier (LM386)

Include photo of your resulting breadboard circuit.
8) Check the functioning of the 4.5 V reference source (LM833) under load. Measure the output votlage with

- No load on the output.
- The output connected to +9 V through a 220 Ohm resistor (sinking 20.5 mA)
- The output connected to 0 V through a 220 Ohm resistor (sourcing 20.5 mA)

9) Check the functioning of the audio amplifier (LM386) under load (connected to an 8 -Ohm speaker). Connect the input to a function generator (cell phone app preferred). Measure the gain when the input is

- A 200 Hz sine wave
- A 1 kHz sine wave
- A 5 kHz sine wave
note: Keep your circuit together - we'll use it for the next few weeks.

