ECE 321-Quiz \#2 - Name

Tempeature Sensors \& Active Flters

1) A thermistor has a temperature-resistance relationship where T is the temperature in degrees C .

$$
R_{t}=2000 \cdot \exp \left(\frac{3000}{T+273}-\frac{3000}{298}\right) \Omega
$$

Assume

$$
\mathrm{R}=800+100^{*}(\text { your birth month })+(\text { your birth day })
$$

If $\mathrm{X}=4.00 \mathrm{~V}$, determine the resistance, R, and the temperature, T

R $800+100^{*} \mathrm{~m}+$ day	X volts	Rt Ohms	T degres C
1314	6.73 V	2704.35	16.33 C

$X=\left(\frac{R_{t}}{R_{t}+1314}\right) 10 \mathrm{~V}$
$R_{t}=\left(\frac{X}{10-X}\right) \cdot 1314 \Omega=2704.349 \Omega$
$T=16.329^{0} C$
2) A thermistor has a temperature-resistance relationship where T is the temperature in degrees C .

$$
R_{t}=2000 \cdot \exp \left(\frac{3000}{T+273}-\frac{3000}{298}\right) \Omega
$$

Design a circuit which outputs

- 0 V at 0 C and
- +10 V at +40 C

Assume

$$
\mathrm{R}=800+100 *(\text { your birth month })+(\text { your birth day })
$$

note: A linearizing circuit isn't required.

At 0C: $\mathrm{Y}=0 \mathrm{~V}$

$$
\mathrm{R}=5028.11 \mathrm{Ohms}
$$

$$
V_{a}=\left(\frac{R}{R+1314}\right) 10 V=7.928 V
$$

$A t+40 C, Y=10 V$

$$
\begin{aligned}
& \mathrm{R}=1234.539 \mathrm{Ohms} \\
& \mathrm{Va}=4.844 \mathrm{~V}
\end{aligned}
$$

As Va goes down, Y goes up. Connect to the plus input
When $\mathrm{Va}=7.92 \mathrm{~V}, \mathrm{Y}=0 \mathrm{~V}$. Make the offset 7.92 V

$$
\text { gain }=\left(\frac{10 V-0 V}{7.928 V-4.844 V}\right)=3.243
$$

3) Find $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, and R 4 so that this circuit implements

$$
Y=\left(\frac{10000}{(s+3)(s+m)(s+d)}\right) X
$$

where

- m is you birth month (1..12) and
- d is your birth date (1..31)

m month	d day	C1 uF	C 2 uF	C 3 uF	R4 Ohms
$\mathbf{5}$	$\mathbf{1 4}$	333.3 uF	20.0 uF	714 nF	4.662 M

DC gain is

$$
\left(\frac{10000}{(s+3)(s+5)(s+14)}\right)_{s=0}=47.62
$$

4) Find R's and C's so that the following circuit implements

$$
Y=\left(\frac{10,000}{(s+3)(s+m+j d)(s+m-j d)}\right)
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

m month	d day	C 1 uF	C 2 uF	R 3 kohms	a oupputisu Y
$\mathbf{5}$	$\mathbf{1 4}$	$\mathbf{3 3 3 u F}$	$\mathbf{6 . 7 2 \mathbf { u F }}$	$\mathbf{1 3 2 . 7 k}$	$\mathbf{0 . 1 5}$

The pole is

$$
\begin{aligned}
& s=-5+j 14=-14.87 \angle 70.35^{0} \\
& 3-k=2 \cos \theta \\
& k=2.327
\end{aligned}
$$

The DC gain should be

$$
\left(\frac{10,000}{(s+3)(s+5+j 14)(s+5-j 14)}\right)_{s=0}=15.08
$$

so the output is scaled by

$$
a=\frac{2.327}{15.08}=0.154
$$

5) Let X and Y be related by the following transfer funciton:

$$
Y=\left(\frac{10000}{(s+3)(s+m)(s+d)}\right) X
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

Assume

$$
x(t)=5+6 \cos (2 t)+7 \sin (2 t)
$$

Determine $\mathrm{y}(\mathrm{t})$ (i.e. find a, b, and c)

$$
y(t)=a+b \cos (2 t)+c \sin (2 t)
$$

DC: $x(t)=5$

$$
Y=\left(\frac{10000}{(s+3)(s+5)(s+14)}\right)_{s=0} \cdot(5)
$$

$Y=238.1$
$A C: x(t)=6 \cos (2 t)+7 \sin (2 t)$

$$
\begin{aligned}
& Y=\left(\frac{10000}{(s+3)(s+5)(s+14)}\right)_{s=j 2} \cdot(6-j 7) \\
& Y=-131.4-j 309.01 \\
& y(t)=-131.4 \cos (2 t)+309.4 \sin (2 t)
\end{aligned}
$$

The total answer is DC + AC

$$
y(t)=238.1-131.4 \cos (2 t)+309.4 \sin (2 t)
$$

6) Determine a filter, $\mathrm{G}(\mathrm{s})$, with the following gain vs. frequency

$G(s) \approx\left(\frac{k s}{(s+3.5+j 20)(s+3.5-j 20)(s+5+j 69)(s+5-j 69)}\right)$
